Unveiling Latent Topics in Robotic Process Automation -- an Approach based on Latent Dirichlet Allocation Smart Review
- URL: http://arxiv.org/abs/2404.05836v1
- Date: Mon, 8 Apr 2024 20:03:06 GMT
- Title: Unveiling Latent Topics in Robotic Process Automation -- an Approach based on Latent Dirichlet Allocation Smart Review
- Authors: Petr Prucha, Peter Madzik, Lukas Falat, Hajo A. Reijers,
- Abstract summary: This study aims to create a science map of RPA and its aspects by revealing latent topics related to RPA.
By using an unsupervised machine learning method based on Latent Dirichlet Allocation, we were able to analyse over 2000 paper abstracts.
Among these, we found 100 distinct study topics, 15 of which have been included in the science map we provide.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Robotic process automation (RPA) is a software technology that in recent years has gained a lot of attention and popularity. By now, research on RPA has spread into multiple research streams. This study aims to create a science map of RPA and its aspects by revealing latent topics related to RPA, their research interest, impact, and time development. We provide a systematic framework that is helpful to develop further research into this technology. By using an unsupervised machine learning method based on Latent Dirichlet Allocation, we were able to analyse over 2000 paper abstracts. Among these, we found 100 distinct study topics, 15 of which have been included in the science map we provide.
Related papers
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
We propose a research playbook with the goal of providing a guide to formulate compelling and socially relevant research questions.
We show it can be used to question the impact of two current disruptive technologies: AI and AR/VR.
arXiv Detail & Related papers (2024-02-20T19:13:36Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
We present a survey of AI techniques proposed in the last 15 years to help researchers conduct systematic analyses of scientific literature.
We describe the tasks currently supported, the types of algorithms applied, and available tools proposed in 34 primary studies.
arXiv Detail & Related papers (2024-01-13T19:12:49Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
The study yields 405 publications published from 2005 to 2020, mapped in 5 different main research topics, and 31 sub-topics.
We observe that only a minority of publications focus on data management and model production problems, and that more studies should address the AI lifecycle from a holistic perspective.
arXiv Detail & Related papers (2021-03-11T11:44:23Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL)
This paper presents a systematic literature review of research at the intersection of SE & DL.
We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques to a given problem domain.
arXiv Detail & Related papers (2020-09-14T15:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.