Boosting Digital Safeguards: Blending Cryptography and Steganography
- URL: http://arxiv.org/abs/2404.05985v2
- Date: Thu, 11 Apr 2024 08:21:27 GMT
- Title: Boosting Digital Safeguards: Blending Cryptography and Steganography
- Authors: Anamitra Maiti, Subham Laha, Rishav Upadhaya, Soumyajit Biswas, Vikas Chaudhary, Biplab Kar, Nikhil Kumar, Jaydip Sen,
- Abstract summary: Steganography involves hiding data within another medium, thereby facilitating covert communication by making the message invisible.
This proposed approach takes advantage of the latest advancements in Artificial Intelligence (AI) and Deep Learning (DL), especially through the application of Generative Adversarial Networks (GANs)
The application of GANs enables a smart, secure system that utilizes the inherent sensitivity of neural networks to slight alterations in data.
- Score: 0.30783046172997025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's digital age, the internet is essential for communication and the sharing of information, creating a critical need for sophisticated data security measures to prevent unauthorized access and exploitation. Cryptography encrypts messages into a cipher text that is incomprehensible to unauthorized readers, thus safeguarding data during its transmission. Steganography, on the other hand, originates from the Greek term for "covered writing" and involves the art of hiding data within another medium, thereby facilitating covert communication by making the message invisible. This proposed approach takes advantage of the latest advancements in Artificial Intelligence (AI) and Deep Learning (DL), especially through the application of Generative Adversarial Networks (GANs), to improve upon traditional steganographic methods. By embedding encrypted data within another medium, our method ensures that the communication remains hidden from prying eyes. The application of GANs enables a smart, secure system that utilizes the inherent sensitivity of neural networks to slight alterations in data, enhancing the protection against detection. By merging the encryption techniques of cryptography with the hiding capabilities of steganography, and augmenting these with the strengths of AI, we introduce a comprehensive security system designed to maintain both the privacy and integrity of information. This system is crafted not just to prevent unauthorized access or modification of data, but also to keep the existence of the data hidden. This fusion of technologies tackles the core challenges of data security in the current era of open digital communication, presenting an advanced solution with the potential to transform the landscape of information security.
Related papers
- Securing Hybrid Wireless Body Area Networks (HyWBAN): Advancements in Semantic Communications and Jamming Techniques [2.1676500745770544]
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs)
Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers.
Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
arXiv Detail & Related papers (2024-04-24T18:21:08Z) - Improving Privacy-Preserving Techniques for Smart Grid using Lattice-based Cryptography [1.4856472820492366]
SPDBlock is a blockchain-based solution ensuring privacy, integrity, and resistance to attacks.
It detects and prosecutes malicious entities while efficiently handling multi-dimensional data transmission.
Performance tests reveal SPDBlock's superiority in communication and computational efficiency over traditional schemes.
arXiv Detail & Related papers (2024-04-17T19:51:52Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems [51.97204522852634]
We present a unified framework that aims to secure an online semantic communications system with three semantic protection modules.
Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination.
Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements.
arXiv Detail & Related papers (2023-09-04T06:34:43Z) - IEEE Big Data Cup 2022: Privacy Preserving Matching of Encrypted Images
with Deep Learning [1.179179628317559]
In this paper, we describe our solution which is based on state-of-the-art deep convolutional neural networks and various data augmentation techniques.
Our solution achieved 1st place at the IEEE Big Data Cup 2022: Privacy Preserving Matching of Encrypted Images Challenge.
arXiv Detail & Related papers (2022-11-18T12:20:40Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
We show that a steganography procedure is perfectly secure under Cachin 1998's information-theoretic model of steganography.
We also show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling.
arXiv Detail & Related papers (2022-10-24T17:40:07Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking
and Steganography [33.12806297686689]
Digital watermarking and steganography techniques can be used to protect sensitive intellectual property and enable confidential communication.
Future research directions that unite digital watermarking and steganography on software engineering to enhance security and mitigate risks are suggested and deliberated.
arXiv Detail & Related papers (2021-07-20T07:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.