論文の概要: FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
- arxiv url: http://arxiv.org/abs/2404.06003v1
- Date: Tue, 9 Apr 2024 04:17:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 15:58:48.219489
- Title: FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
- Title(参考訳): FreeEval: 大規模言語モデルの信頼性と効率的な評価のためのモジュールフレームワーク
- Authors: Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Zhengran Zeng, Wei Ye, Jindong Wang, Yue Zhang, Shikun Zhang,
- Abstract要約: FreeEvalは、大規模言語モデルの信頼性と効率的な自動評価を可能にするために設計された、モジュール化されたスケーラブルなフレームワークである。
FreeEvalの統一された抽象化は、統合を単純化し、多様な評価方法論の透明性を改善します。
このフレームワークは、人間の評価やデータ汚染検出などのメタ評価技術を統合し、動的評価モジュールとともに、評価結果の公平性を高める。
- 参考スコア(独自算出の注目度): 36.273451767886726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の評価手法とデータセットの急速な開発は、信頼性、再現性、効率性を確保しつつ、最先端の評価技術をコスト効率よく統合する、という大きな課題につながった。
現在、様々な評価アプローチをシームレスに統合する統一的で適応可能なフレームワークが欠如している。
さらに, LLM推論に伴う実質的なコストに直面する場合, 評価効率は概ね見落とされ, 潜在的なデータ汚染のため, 評価結果の信頼性は疑問視されることが多い。
これらの課題に対応するために、我々は、LLMの信頼性と効率的な自動評価を可能にするモジュール式でスケーラブルなフレームワークであるFreeEvalを紹介した。
第一に、FreeEvalの統一された抽象化は統合を単純化し、多様な評価手法の透明性を改善し、高度なLCM相互作用を必要とする動的評価を含む。
第2に、このフレームワークは、人間の評価やデータ汚染検出などのメタ評価技術を統合し、プラットフォーム内の動的評価モジュールとともに、評価結果の公平性を高める。
最後に、FreeEvalは分散計算とキャッシュ戦略を含む高性能なインフラストラクチャで設計されており、オープンソースおよびプロプライエタリなLLMのためのマルチノード、マルチGPUクラスタにわたる広範な評価を可能にする。
関連論文リスト
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - Unveiling Context-Aware Criteria in Self-Assessing LLMs [28.156979106994537]
本研究では, 文脈認識基準(SALC)を各評価インスタンスに適した動的知識と統合した, 自己評価 LLM フレームワークを提案する。
経験的評価は,本手法が既存のベースライン評価フレームワークを著しく上回っていることを示す。
また,AlpacaEval2リーダボードにおけるLCWin-Rateの改善を,選好データ生成に使用する場合の12%まで改善した。
論文 参考訳(メタデータ) (2024-10-28T21:18:49Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models [71.8065384742686]
LMMS-EVALは50以上のタスクと10以上のモデルを持つ統一的で標準化されたマルチモーダルベンチマークフレームワークである。
LMMS-EVAL LITEは、カバー範囲と効率の両方を重視したプルーニング評価ツールキットである。
マルチモーダルなLIVEBENCHは、ニュースやオンラインフォーラムを継続的に更新し、野生におけるモデルの一般化能力を評価する。
論文 参考訳(メタデータ) (2024-07-17T17:51:53Z) - FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom [19.104850413126066]
大規模言語モデル(LLM)の協調学習のための有望なソリューションとして、フェデレートラーニング(FL)が登場した。
ラベル付きテストセットと類似度に基づくメトリクスに依存する従来の評価手法は、許容できる答えのサブセットのみをカバーする。
我々は、ラベル付きテストセットや外部ツールに依存することなく、下流タスクにおけるLCMの信頼性の高い性能測定を提供するFedEval-LLMを提案する。
論文 参考訳(メタデータ) (2024-04-18T15:46:26Z) - UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs [74.1976921342982]
本稿では,ユーザフレンドリな評価フレームワークであるUltraEvalを紹介し,その軽量性,包括性,モジュール性,効率性を特徴とする。
その結果のコンポーザビリティにより、統一された評価ワークフロー内で、さまざまなモデル、タスク、プロンプト、ベンチマーク、メトリクスを自由に組み合わせることができる。
論文 参考訳(メタデータ) (2024-04-11T09:17:12Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
生成型大規模言語モデル(LLM)は注目に値するが、これらのモデルによって生成されたテキストの品質は、しばしば永続的な問題を示す。
MATEval: "Multi-Agent Text Evaluation framework"を提案する。
本フレームワークは,評価プロセスの深度と広さを高めるために,自己回帰と整合性戦略とフィードバック機構を取り入れている。
論文 参考訳(メタデータ) (2024-03-28T10:41:47Z) - CheckEval: Robust Evaluation Framework using Large Language Model via Checklist [6.713203569074019]
大規模言語モデルを用いた新しい評価フレームワークであるCheckEvalを紹介する。
CheckEvalは、現在の評価方法における曖昧さと一貫性の課題に対処する。
論文 参考訳(メタデータ) (2024-03-27T17:20:39Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEvalは、大規模言語モデルのための知識ベースでインタラクティブな評価フレームワークである。
動的汚染耐性評価を達成するために、LSMを動力とする"インターアクター"の役割を初めて取り入れている。
5つのデータセットにわたる7つのLLMの大規模な実験により、KIEvalの有効性と一般化が検証された。
論文 参考訳(メタデータ) (2024-02-23T01:30:39Z) - LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain
Conversations with Large Language Models [28.441725610692714]
大規模言語モデル(LLM)を用いたオープンドメイン会話のための多次元自動評価手法を提案する。
単一のモデルコールにおける会話品質の多次元を網羅する統合評価スキーマを利用する単一プロンプトベースの評価手法を設計する。
各種ベンチマークデータセットを用いたLCM-Evalの性能評価を行い,その有効性,効率,適応性について,最先端評価法と比較した。
論文 参考訳(メタデータ) (2023-05-23T05:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。