論文の概要: Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
- arxiv url: http://arxiv.org/abs/2411.15488v1
- Date: Sat, 23 Nov 2024 08:06:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:53.763489
- Title: Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
- Title(参考訳): テキスト・画像生成のための自動評価:タスク分解フレームワーク、蒸留訓練、メタ評価ベンチマーク
- Authors: Rong-Cheng Tu, Zi-Ao Ma, Tian Lan, Yuehao Zhao, Heyan Huang, Xian-Ling Mao,
- Abstract要約: GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 62.58869921806019
- License:
- Abstract: Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
- Abstract(参考訳): 拡散モデルの顕著な進歩により、テキスト・画像生成は大きな進歩を遂げ、生成した画像の自動品質評価の要求が押し寄せている。
現在の最先端の自動評価手法は、特にGPT-4oのような強力な商用モデルであるMLLM(Multi-modal Large Language Models)に大きく依存している。
これらのモデルは非常に効果的であるが、その相当なコストは大規模評価においてスケーラビリティを制限している。
オープンソースMLLMを採用することは代替案であるが、商用MLLMに比べてマルチモーダルデータ処理の大幅な制限により性能が低下する。
これらの課題に対処するために,まず GPT-4o に基づくタスク分解評価フレームワークを提案し,複雑な評価タスクを単純なサブタスクに分割することで学習の複雑さを効果的に軽減する新しいトレーニングデータセットを自動構築する。
本データセットに基づいて,GPT-4oの評価能力を7BオープンソースMLLM,MiniCPM-V-2.6に効果的に活用するための革新的なトレーニング戦略を設計する。
さらに,先行研究と提案モデルを確実にかつ包括的に評価するために,生成画像の品質スコアとともに,連鎖説明を含むメタ評価ベンチマークを手作業でアノテートする。
実験の結果,我々の蒸留したオープンソースMLLMは,現在最先端のGPT-4oベースラインであるVIEScoreよりも優れており,SpearmanとKendallの相関性は4.6%以上向上していることがわかった。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness [94.03511733306296]
我々は,MLLMを超GPT-4V信頼性のための完全なオープンソースパラダイムに整合させるフレームワークであるRLAIF-Vを紹介する。
RLAIF-Vは、高品質なフィードバックデータとオンラインフィードバック学習アルゴリズムを含む、2つの観点から、オープンソースフィードバックを最大限活用する。
実験により、RLAIF-Vは、他のタスクのパフォーマンスを犠牲にすることなく、モデルの信頼性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-05-27T14:37:01Z) - Investigating Automatic Scoring and Feedback using Large Language Models [46.1232919707345]
本稿では,PEFTに基づく量子化モデルの有効性について検討する。
その結果, 微調整LDMによる評価は精度が高く, 平均的に3%未満の誤差が得られた。
論文 参考訳(メタデータ) (2024-05-01T16:13:54Z) - PCA-Bench: Evaluating Multimodal Large Language Models in
Perception-Cognition-Action Chain [37.448177723993346]
MLLM(Multimodal Large Language Models)の統合能力を評価するベンチマークであるPCA-Benchを提案する。
タスク命令と多様なコンテキストが与えられたモデルでは、パーセプション、認知、アクションを推論チェーンにシームレスに統合する必要がある。
自動評価プロトコルであるPCA-Evalを提案し,10種類のMLLMを評価した。
論文 参考訳(メタデータ) (2024-02-21T07:09:58Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。