Uncertainty-aware Evidential Fusion-based Learning for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2404.06177v2
- Date: Thu, 11 Apr 2024 15:57:52 GMT
- Title: Uncertainty-aware Evidential Fusion-based Learning for Semi-supervised Medical Image Segmentation
- Authors: Yuanpeng He, Lijian Li,
- Abstract summary: This paper integrates the evidential predictive results in the cross-region of mixed and original samples to reallocate the confidence degree and uncertainty measure of each voxel.
We design a voxel-level learning strategy by introducing information entropy to combine with the fused uncertainty measure to estimate voxel prediction more precisely.
The experimental results on LA, Pancreas-CT, ACDC and TBAD datasets demonstrate the superior performance of our proposed method in comparison with the existing state of the arts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the existing uncertainty-based semi-supervised medical segmentation methods have achieved excellent performance, they usually only consider a single uncertainty evaluation, which often fails to solve the problem related to credibility completely. Therefore, based on the framework of evidential deep learning, this paper integrates the evidential predictive results in the cross-region of mixed and original samples to reallocate the confidence degree and uncertainty measure of each voxel, which is realized by emphasizing uncertain information of probability assignments fusion rule of traditional evidence theory. Furthermore, we design a voxel-level asymptotic learning strategy by introducing information entropy to combine with the fused uncertainty measure to estimate voxel prediction more precisely. The model will gradually pay attention to the prediction results with high uncertainty in the learning process, to learn the features that are difficult to master. The experimental results on LA, Pancreas-CT, ACDC and TBAD datasets demonstrate the superior performance of our proposed method in comparison with the existing state of the arts.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.
We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.
We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - Deep Evidential Learning for Radiotherapy Dose Prediction [0.0]
We present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction.
We found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training.
arXiv Detail & Related papers (2024-04-26T02:43:45Z) - EPL: Evidential Prototype Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose Evidential Prototype Learning (EPL) to fuse voxel probability predictions from different sources and prototype fusion utilization of labeled and unlabeled data.
The uncertainty not only enables the model to self-correct predictions but also improves the guided learning process with pseudo-labels and is able to feed back into the construction of hidden features.
arXiv Detail & Related papers (2024-04-09T10:04:06Z) - EVIL: Evidential Inference Learning for Trustworthy Semi-supervised
Medical Image Segmentation [7.58442624111591]
We introduce Evidential Inference Learning (EVIL) into semi-supervised medical image segmentation.
EVIL provides a theoretically guaranteed solution to infer accurate quantification uncertainty in a single forward pass.
We show that EVIL achieves competitive performance in comparison with several state-of-the-art methods on the public dataset.
arXiv Detail & Related papers (2023-07-18T05:59:27Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.