Leveraging edge detection and neural networks for better UAV localization
- URL: http://arxiv.org/abs/2404.06207v3
- Date: Sat, 1 Jun 2024 09:31:08 GMT
- Title: Leveraging edge detection and neural networks for better UAV localization
- Authors: Theo Di Piazza, Enric Meinhardt-Llopis, Gabriele Facciolo, Benedicte Bascle, Corentin Abgrall, Jean-Clement Devaux,
- Abstract summary: We propose a novel method for geolocalizing Unmanned Aerial Vehicles (UAVs) in environments lacking Global Navigation Satellite Systems (GNSS)
Current state-of-the-art techniques employ an offline-trained encoder to generate a vector representation (embedding) of the UAV's current view.
We demonstrate that the performance of these methods can be significantly enhanced by preprocessing the images to extract their edges.
- Score: 5.781342655426309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel method for geolocalizing Unmanned Aerial Vehicles (UAVs) in environments lacking Global Navigation Satellite Systems (GNSS). Current state-of-the-art techniques employ an offline-trained encoder to generate a vector representation (embedding) of the UAV's current view, which is then compared with pre-computed embeddings of geo-referenced images to determine the UAV's position. Here, we demonstrate that the performance of these methods can be significantly enhanced by preprocessing the images to extract their edges, which exhibit robustness to seasonal and illumination variations. Furthermore, we establish that utilizing edges enhances resilience to orientation and altitude inaccuracies. Additionally, we introduce a confidence criterion for localization. Our findings are substantiated through synthetic experiments.
Related papers
- Unsupervised Multi-view UAV Image Geo-localization via Iterative Rendering [31.716967688739036]
Unmanned Aerial Vehicle (UAV) Cross-View Geo-Localization (CVGL) presents significant challenges.
Existing methods rely on the supervision of labeled datasets to extract viewpoint-invariant features for cross-view retrieval.
We propose an unsupervised solution that lifts the scene representation to 3d space from UAV observations for satellite image generation.
arXiv Detail & Related papers (2024-11-22T09:22:39Z) - Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation [0.0]
We present an orientation-guided training framework for UAV-view geo-localisation.
We experimentally demonstrate that this prediction supports the training and outperforms previous approaches.
We achieve state-of-the-art results on both the University-1652 and University-160k datasets.
arXiv Detail & Related papers (2023-08-02T07:32:32Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
We propose a Received Signal Strength (RSS) fingerprint and convolutional neural network-based algorithm, LocUNet.
In this paper, we study the localization problem in dense urban settings.
We first recognize LocUNet's ability to learn the underlying prior distribution of the Rx position or Rx and transmitter (Tx) association preferences from the training data, and attribute its high performance to these.
arXiv Detail & Related papers (2022-11-28T00:31:02Z) - BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View
Recognition via Perspective Supervision [101.36648828734646]
We present a novel bird's-eye-view (BEV) detector with perspective supervision, which converges faster and better suits modern image backbones.
The proposed method is verified with a wide spectrum of traditional and modern image backbones and achieves new SoTA results on the large-scale nuScenes dataset.
arXiv Detail & Related papers (2022-11-18T18:59:48Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
In this work, we propose an alternative domain-adaptive approach to depth estimation.
Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner.
The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin.
arXiv Detail & Related papers (2021-09-24T08:11:34Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model [0.5156484100374058]
We propose a multi-modal registration based SLAM algorithm, which estimates the location of a planet UAV using a nadir view camera on the UAV.
To overcome the scale and appearance difference between on-board UAV images and pre-installed digital terrain model, a theoretical model is proposed to prove that topographic features of UAV image and DEM can be correlated in frequency domain via cross power spectrum.
To test the robustness and effectiveness of the proposed localization algorithm, a new cross-source drone-based localization dataset for planetary exploration is proposed.
arXiv Detail & Related papers (2021-06-24T02:54:01Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.