Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model
- URL: http://arxiv.org/abs/2106.12738v1
- Date: Thu, 24 Jun 2021 02:54:01 GMT
- Title: Planetary UAV localization based on Multi-modal Registration with
Pre-existing Digital Terrain Model
- Authors: Xue Wan, Yuanbin Shao, Shengyang Li
- Abstract summary: We propose a multi-modal registration based SLAM algorithm, which estimates the location of a planet UAV using a nadir view camera on the UAV.
To overcome the scale and appearance difference between on-board UAV images and pre-installed digital terrain model, a theoretical model is proposed to prove that topographic features of UAV image and DEM can be correlated in frequency domain via cross power spectrum.
To test the robustness and effectiveness of the proposed localization algorithm, a new cross-source drone-based localization dataset for planetary exploration is proposed.
- Score: 0.5156484100374058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The autonomous real-time optical navigation of planetary UAV is of the key
technologies to ensure the success of the exploration. In such a GPS denied
environment, vision-based localization is an optimal approach. In this paper,
we proposed a multi-modal registration based SLAM algorithm, which estimates
the location of a planet UAV using a nadir view camera on the UAV compared with
pre-existing digital terrain model. To overcome the scale and appearance
difference between on-board UAV images and pre-installed digital terrain model,
a theoretical model is proposed to prove that topographic features of UAV image
and DEM can be correlated in frequency domain via cross power spectrum. To
provide the six-DOF of the UAV, we also developed an optimization approach
which fuses the geo-referencing result into a SLAM system via LBA (Local Bundle
Adjustment) to achieve robust and accurate vision-based navigation even in
featureless planetary areas. To test the robustness and effectiveness of the
proposed localization algorithm, a new cross-source drone-based localization
dataset for planetary exploration is proposed. The proposed dataset includes
40200 synthetic drone images taken from nine planetary scenes with related DEM
query images. Comparison experiments carried out demonstrate that over the
flight distance of 33.8km, the proposed method achieved average localization
error of 0.45 meters, compared to 1.31 meters by ORB-SLAM, with the processing
speed of 12hz which will ensure a real-time performance. We will make our
datasets available to encourage further work on this promising topic.
Related papers
- Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles [7.384309568198598]
Global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments.
GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks.
We present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in restricted marine environments.
arXiv Detail & Related papers (2024-08-21T08:37:37Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Automatic detection of aerial survey ground control points based on
Yolov5-OBB [0.0]
We propose a solution that uses a deep learning-based architecture, YOLOv5-OBB, combined with a confidence threshold filtering algorithm and an optimal ranking algorithm.
We applied our proposed method to a dataset collected by DJI Phantom 4 Pro drone.
arXiv Detail & Related papers (2023-03-06T11:13:23Z) - Ultra-low Power Deep Learning-based Monocular Relative Localization
Onboard Nano-quadrotors [64.68349896377629]
This work presents a novel autonomous end-to-end system that addresses the monocular relative localization, through deep neural networks (DNNs), of two peer nano-drones.
To cope with the ultra-constrained nano-drone platform, we propose a vertically-integrated framework, including dataset augmentation, quantization, and system optimizations.
Experimental results show that our DNN can precisely localize a 10cm-size target nano-drone by employing only low-resolution monochrome images, up to 2m distance.
arXiv Detail & Related papers (2023-03-03T14:14:08Z) - UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search
and Rescue in DARPA SubT [5.145696432159643]
This paper presents a novel approach for autonomous cooperating UAVs in search and rescue operations in subterranean domains with complex topology.
The proposed system was ranked second in the Virtual Track of the DARPA SubT Finals as part of the team CTU-CRAS-NORLAB.
The proposed solution also proved to be a robust system for deployment onboard physical UAVs flying in the extremely harsh and confined environment of the real-world competition.
arXiv Detail & Related papers (2022-06-16T13:54:33Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map.
The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization.
Experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method.
arXiv Detail & Related papers (2022-04-10T19:16:58Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Distributed Variable-Baseline Stereo SLAM from two UAVs [17.513645771137178]
In this article, we employ two UAVs equipped with one monocular camera and one IMU each, to exploit their view overlap and relative distance measurements.
In order to control the glsuav agents autonomously, we propose a decentralized collaborative estimation scheme.
We demonstrate the effectiveness of the approach at high altitude flights of up to 160m, going significantly beyond the capabilities of state-of-the-art VIO methods.
arXiv Detail & Related papers (2020-09-10T12:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.