A Deep Learning Framework with Geographic Information Adaptive Loss for Remote Sensing Images based UAV Self-Positioning
- URL: http://arxiv.org/abs/2502.16164v1
- Date: Sat, 22 Feb 2025 09:36:34 GMT
- Title: A Deep Learning Framework with Geographic Information Adaptive Loss for Remote Sensing Images based UAV Self-Positioning
- Authors: Mingkun Li, Ziming Wang, Guang Huo, Wei Chen, Xiaoning Zhao,
- Abstract summary: Self-positioning of UAVs in GPS-denied environments has become a critical objective.<n>We present a deep learning framework with geographic information adaptive loss to achieve precise localization.<n>Results demonstrate the method's efficacy in enabling UAVs to achieve precise self-positioning.
- Score: 10.16507150219648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the expanding application scope of unmanned aerial vehicles (UAVs), the demand for stable UAV control has significantly increased. However, in complex environments, GPS signals are prone to interference, resulting in ineffective UAV positioning. Therefore, self-positioning of UAVs in GPS-denied environments has become a critical objective. Some methods obtain geolocation information in GPS-denied environments by matching ground objects in the UAV viewpoint with remote sensing images. However, most of these methods only provide coarse-level positioning, which satisfies cross-view geo-localization but cannot support precise UAV positioning tasks. Consequently, this paper focuses on a newer and more challenging task: precise UAV self-positioning based on remote sensing images. This approach not only considers the features of ground objects but also accounts for the spatial distribution of objects in the images. To address this challenge, we present a deep learning framework with geographic information adaptive loss, which achieves precise localization by aligning UAV images with corresponding satellite imagery in fine detail through the integration of geographic information from multiple perspectives. To validate the effectiveness of the proposed method, we conducted a series of experiments. The results demonstrate the method's efficacy in enabling UAVs to achieve precise self-positioning using remote sensing imagery.
Related papers
- More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV [58.89234732689013]
CODrone is a comprehensive oriented object detection dataset for UAVs that accurately reflects real-world conditions.
It also serves as a new benchmark designed to align with downstream task requirements.
We conduct a series of experiments based on 22 classical or SOTA methods to rigorously evaluate CODrone.
arXiv Detail & Related papers (2025-04-28T17:56:02Z) - Precise GPS-Denied UAV Self-Positioning via Context-Enhanced Cross-View Geo-Localization [10.429391988135345]
We propose the Context-Enhanced method for precise UAV Self-Positioning (CEUSP), specifically designed for UAV self-positioning tasks.<n>CEUSP integrates a Dynamic Sampling Strategy (DSS) to efficiently select optimal negative samples, while the Rubik's Cube Attention (RCA) module, combined with the Context-Aware Channel Integration (CACI) module, enhances feature representation and discrimination.<n>Our approach achieves state-of-the-art performance on the DenseUAV dataset, which is specifically designed for dense urban contexts.
arXiv Detail & Related papers (2025-02-17T03:49:18Z) - Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
We introduce a more practical UAV geo-localization task including partial matches of cross-view paired data.<n>Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization.
arXiv Detail & Related papers (2024-09-25T13:33:28Z) - Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
We propose a weakly supervised learning strategy for ground-to-satellite image registration.
It derives positive and negative satellite images for each ground image.
We also propose a self-supervision strategy for cross-view image relative rotation estimation.
arXiv Detail & Related papers (2024-09-10T12:57:16Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - UAV-VisLoc: A Large-scale Dataset for UAV Visual Localization [20.37586403749362]
We present a large-scale dataset, UAV-VisLoc, to facilitate the UAV visual localization task.
Our dataset includes 6,742 drone images and 11 satellite maps, with metadata such as latitude, longitude, altitude, and capture date.
arXiv Detail & Related papers (2024-05-20T10:24:10Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.