論文の概要: [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
- arxiv url: http://arxiv.org/abs/2404.06214v2
- Date: Sat, 27 Jul 2024 18:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 23:37:56.070772
- Title: [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
- Title(参考訳): 論文要旨]第2回BabyLMチャレンジ:発達可能コーパスにおけるサンプル効率事前学習
- Authors: Leshem Choshen, Ryan Cotterell, Michael Y. Hu, Tal Linzen, Aaron Mueller, Candace Ross, Alex Warstadt, Ethan Wilcox, Adina Williams, Chengxu Zhuang,
- Abstract要約: このCfPはBabyLM Challenge 2024-2025のルールを提供する。
課題の全体的目標は同じままです。
私たちは緩い線を紙の線で置き換える。
事前学習に関するルールを緩和します。
マルチモーダル・ヴィジュアル・アンド・ランゲージ・トラックを導入する。
- 参考スコア(独自算出の注目度): 81.34965784440176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge.
- Abstract(参考訳): 昨年のBabyLM Challengeの成功の後、2024/2025年に再び開催されます。
挑戦の全体的目標は同じだが、いくつかの競争ルールは異なる。
まず、緩やかなトラックをペーパートラックに置き換えて、(例えば)モデルベースでない投稿、新しい認知にインスパイアされたベンチマーク、分析テクニックを可能にします。
第2に、データの事前トレーニングに関するルールを緩和し、参加者が100Mワードまたは10Mワードの予算内に留まるならば、独自のデータセットを構築することが可能になります。
第3に、マルチモーダル・ヴィジュアル・アンド・ランゲージ・トラックを導入し、LMモデルトレーニングの出発点として、50%のテキストのみと50%の画像テキスト・マルチモーダルデータからなるコーパスをリリースする。
このCfPの目的は、今年のチャレンジのルールを提供し、これらのルールの変更とその理論的根拠をより詳細に説明し、今年の競争のタイムラインを提供し、昨年のチャレンジからの質問に対する回答を提供することである。
関連論文リスト
- ICDAR 2023 Competition on Hierarchical Text Detection and Recognition [60.68100769639923]
このコンペティションは、テキストの検出と認識を共同で行うディープラーニングモデルとシステムの研究を促進することを目的としている。
提案するコンペティション組織の詳細について,タスク,データセット,評価,スケジュールなどを紹介する。
大会期間中(2023年1月2日から2023年4月1日まで)、20チーム以上から少なくとも50人が提案された2つのタスクで応募された。
論文 参考訳(メタデータ) (2023-05-16T18:56:12Z) - MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised
Learning [90.17500229142755]
第1回マルチモーダル感情認識チャレンジ(MER 2023)は、ACMマルチメディアで成功した。
本稿では、この課題の背景にある動機を紹介し、ベンチマークデータセットを説明し、参加者に関する統計情報を提供する。
この高品質なデータセットは、特に中国の研究コミュニティにとって、マルチモーダルな感情認識の新しいベンチマークになり得ると考えています。
論文 参考訳(メタデータ) (2023-04-18T13:23:42Z) - Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on
a developmentally plausible corpus [32.51325830633226]
BabyLM Challenge: 発達可能なコーパス上でのサンプル効率事前学習のための論文の募集を行う。
この共有タスクは、小規模言語モデリング、ヒューマン言語獲得、低リソースNLP、認知モデリングに関心を持つ参加者を対象としている。
論文 参考訳(メタデータ) (2023-01-27T15:52:50Z) - 1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene
Text Understanding: Cropped Word Recognition [35.2137931915091]
本報告では,ECCV 2022における語彙外シーンテキスト理解(OOV-ST)の課題に対する勝者ソリューションについて述べる。
語彙内単語と語彙外単語の両方を考慮すると、全体的な単語精度は69.73%に達する。
論文 参考訳(メタデータ) (2022-08-04T16:20:58Z) - ABAW: Learning from Synthetic Data & Multi-Task Learning Challenges [4.273075747204267]
本稿では、2022年欧州コンピュータビジョン会議(ECCV)と共同で開催された第4回ABAWコンペティションについて述べる。
論文 参考訳(メタデータ) (2022-07-03T22:43:33Z) - Team Cogitat at NeurIPS 2021: Benchmarks for EEG Transfer Learning
Competition [55.34407717373643]
脳波復号のための主題に依存しないディープラーニングモデルの構築は、強い共シフトの課題に直面している。
我々のアプローチは、ディープラーニングモデルの様々な層に特徴分布を明示的に整列させることです。
この方法論は、NeurIPSカンファレンスで開催されている2021年のEEG Transfer Learningコンペティションで優勝した。
論文 参考訳(メタデータ) (2022-02-01T11:11:08Z) - NTIRE 2021 Multi-modal Aerial View Object Classification Challenge [88.89190054948325]
CVPR の NTIRE 2021 ワークショップと共同で,MAVOC (Multi-modal Aerial View Object Classification) の最初の挑戦を紹介した。
この課題は、EOとSAR画像を用いた2つの異なるトラックで構成されている。
本コンペティションで提案した最上位の手法について検討し,その成果を目視テストセットで評価する。
論文 参考訳(メタデータ) (2021-07-02T16:55:08Z) - Analysing Affective Behavior in the First ABAW 2020 Competition [49.90617840789334]
ABAW(Affective Behavior Analysis in-the-Wild) 2020コンペティションは、3つの主要な行動タスクの自動分析を目的とした最初のコンペティションである。
アルゼンチンのブエノスアイレスで2020年5月に開催されたIEEE Face and Gesture Recognitionと共同で開催されるこのコンペティションについて説明する。
評価指標を概説し,ベースラインシステムとトップ3の実施するチームの方法論をチャレンジ毎に提示し,その結果を最終的に提示する。
論文 参考訳(メタデータ) (2020-01-30T15:41:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。