Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning
- URL: http://arxiv.org/abs/2404.06230v1
- Date: Tue, 9 Apr 2024 11:42:32 GMT
- Title: Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning
- Authors: Emre Ozfatura, Kerem Ozfatura, Alptekin Kupcu, Deniz Gunduz,
- Abstract summary: Federated learning (FL) has been introduced to enable a large number of clients, possibly mobile devices, to collaborate on generating a generalized machine learning model.
Due to the participation of a large number of clients, it is often difficult to profile and verify each client, which leads to a security threat.
We introduce a hybrid sparse Byzantine attack that is composed of two parts: one exhibiting a sparse nature and attacking only certain NN locations with higher sensitivity, and the other being more silent but accumulating over time.
- Score: 6.384138583754105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has been introduced to enable a large number of clients, possibly mobile devices, to collaborate on generating a generalized machine learning model thanks to utilizing a larger number of local samples without sharing to offer certain privacy to collaborating clients. However, due to the participation of a large number of clients, it is often difficult to profile and verify each client, which leads to a security threat that malicious participants may hamper the accuracy of the trained model by conveying poisoned models during the training. Hence, the aggregation framework at the parameter server also needs to minimize the detrimental effects of these malicious clients. A plethora of attack and defence strategies have been analyzed in the literature. However, often the Byzantine problem is analyzed solely from the outlier detection perspective, being oblivious to the topology of neural networks (NNs). In the scope of this work, we argue that by extracting certain side information specific to the NN topology, one can design stronger attacks. Hence, inspired by the sparse neural networks, we introduce a hybrid sparse Byzantine attack that is composed of two parts: one exhibiting a sparse nature and attacking only certain NN locations with higher sensitivity, and the other being more silent but accumulating over time, where each ideally targets a different type of defence mechanism, and together they form a strong but imperceptible attack. Finally, we show through extensive simulations that the proposed hybrid Byzantine attack is effective against 8 different defence methods.
Related papers
- Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - A Robust Adversary Detection-Deactivation Method for Metaverse-oriented
Collaborative Deep Learning [13.131323206843733]
This paper proposes an adversary detection-deactivation method, which can limit and isolate the access of potential malicious participants.
A detailed protection analysis has been conducted on a Multiview CDL case, and results show that the protocol can effectively prevent harmful access by manner analysis.
arXiv Detail & Related papers (2023-10-21T06:45:18Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Invariant Aggregator for Defending against Federated Backdoor Attacks [28.416262423174796]
Federated learning enables training high-utility models across several clients without directly sharing their private data.
As a downside, the federated setting makes the model vulnerable to various adversarial attacks in the presence of malicious clients.
We propose an invariant aggregator that redirects the aggregated update to invariant directions that are generally useful.
arXiv Detail & Related papers (2022-10-04T18:06:29Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - Pruning in the Face of Adversaries [0.0]
We evaluate the impact of neural network pruning on the adversarial robustness against L-0, L-2 and L-infinity attacks.
Our results confirm that neural network pruning and adversarial robustness are not mutually exclusive.
We extend our analysis to situations that incorporate additional assumptions on the adversarial scenario and show that depending on the situation, different strategies are optimal.
arXiv Detail & Related papers (2021-08-19T09:06:16Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
Adrial training is the main method for improving adversarial robustness and the first line of defense against adversarial attacks.
This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class.
Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data.
arXiv Detail & Related papers (2020-08-18T10:23:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.