Invariant Aggregator for Defending against Federated Backdoor Attacks
- URL: http://arxiv.org/abs/2210.01834v4
- Date: Fri, 8 Mar 2024 20:32:07 GMT
- Title: Invariant Aggregator for Defending against Federated Backdoor Attacks
- Authors: Xiaoyang Wang, Dimitrios Dimitriadis, Sanmi Koyejo, Shruti Tople
- Abstract summary: Federated learning enables training high-utility models across several clients without directly sharing their private data.
As a downside, the federated setting makes the model vulnerable to various adversarial attacks in the presence of malicious clients.
We propose an invariant aggregator that redirects the aggregated update to invariant directions that are generally useful.
- Score: 28.416262423174796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables training high-utility models across several
clients without directly sharing their private data. As a downside, the
federated setting makes the model vulnerable to various adversarial attacks in
the presence of malicious clients. Despite the theoretical and empirical
success in defending against attacks that aim to degrade models' utility,
defense against backdoor attacks that increase model accuracy on backdoor
samples exclusively without hurting the utility on other samples remains
challenging. To this end, we first analyze the failure modes of existing
defenses over a flat loss landscape, which is common for well-designed neural
networks such as Resnet (He et al., 2015) but is often overlooked by previous
works. Then, we propose an invariant aggregator that redirects the aggregated
update to invariant directions that are generally useful via selectively
masking out the update elements that favor few and possibly malicious clients.
Theoretical results suggest that our approach provably mitigates backdoor
attacks and remains effective over flat loss landscapes. Empirical results on
three datasets with different modalities and varying numbers of clients further
demonstrate that our approach mitigates a broad class of backdoor attacks with
a negligible cost on the model utility.
Related papers
- Aggressive or Imperceptible, or Both: Network Pruning Assisted Hybrid Byzantines in Federated Learning [6.384138583754105]
Federated learning (FL) has been introduced to enable a large number of clients, possibly mobile devices, to collaborate on generating a generalized machine learning model.
Due to the participation of a large number of clients, it is often difficult to profile and verify each client, which leads to a security threat.
We introduce a hybrid sparse Byzantine attack that is composed of two parts: one exhibiting a sparse nature and attacking only certain NN locations with higher sensitivity, and the other being more silent but accumulating over time.
arXiv Detail & Related papers (2024-04-09T11:42:32Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
Backdoor attacks are serious security threats to machine learning models.
In this paper, we explore the task of purifying a backdoored model using a small clean dataset.
By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk.
arXiv Detail & Related papers (2023-07-20T03:56:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - On the Vulnerability of Backdoor Defenses for Federated Learning [8.345632941376673]
Federated Learning (FL) is a popular distributed machine learning paradigm that enables jointly training a global model without sharing clients' data.
In this paper, we study whether the current defense mechanisms truly neutralize the backdoor threats from federated learning.
We propose a new federated backdoor attack method for possible countermeasures.
arXiv Detail & Related papers (2023-01-19T17:02:02Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Dropout is NOT All You Need to Prevent Gradient Leakage [0.6021787236982659]
We analyze the effect of dropout on iterative gradient inversion attacks.
We propose a novel Inversion Attack (DIA) that jointly optimize for client data and dropout masks.
We find that our proposed attack bypasses the protection seemingly induced by dropout and reconstructs client data with high fidelity.
arXiv Detail & Related papers (2022-08-12T08:29:44Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
Deep neural networks (DNNs) are vulnerable to adversarial noise.
adversarial robustness can be improved by exploiting adversarial examples.
Models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples.
arXiv Detail & Related papers (2021-06-09T12:49:54Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.