論文の概要: Label-Efficient 3D Object Detection For Road-Side Units
- arxiv url: http://arxiv.org/abs/2404.06256v1
- Date: Tue, 9 Apr 2024 12:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 14:50:19.002318
- Title: Label-Efficient 3D Object Detection For Road-Side Units
- Title(参考訳): 道路側ユニットのためのラベル効率の良い3次元物体検出
- Authors: Minh-Quan Dao, Holger Caesar, Julie Stephany Berrio, Mao Shan, Stewart Worrall, Vincent Frémont, Ezio Malis,
- Abstract要約: 協調的知覚は、インテリジェント・ロードサイド・ユニット(RSU)との深部情報融合による自動運転車の知覚を高める
これらの手法は、特に注釈付きRSUデータを必要とするため、実際のデプロイメントにおいて大きなハードルを生んでいる。
教師なしオブジェクト発見に基づくRSUのためのラベル効率の高いオブジェクト検出手法を考案する。
- 参考スコア(独自算出の注目度): 10.663986706501188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occlusion presents a significant challenge for safety-critical applications such as autonomous driving. Collaborative perception has recently attracted a large research interest thanks to the ability to enhance the perception of autonomous vehicles via deep information fusion with intelligent roadside units (RSU), thus minimizing the impact of occlusion. While significant advancement has been made, the data-hungry nature of these methods creates a major hurdle for their real-world deployment, particularly due to the need for annotated RSU data. Manually annotating the vast amount of RSU data required for training is prohibitively expensive, given the sheer number of intersections and the effort involved in annotating point clouds. We address this challenge by devising a label-efficient object detection method for RSU based on unsupervised object discovery. Our paper introduces two new modules: one for object discovery based on a spatial-temporal aggregation of point clouds, and another for refinement. Furthermore, we demonstrate that fine-tuning on a small portion of annotated data allows our object discovery models to narrow the performance gap with, or even surpass, fully supervised models. Extensive experiments are carried out in simulated and real-world datasets to evaluate our method.
- Abstract(参考訳): 閉塞は、自律運転のような安全クリティカルなアプリケーションにとって重要な課題である。
協調的知覚は、インテリジェントロードサイドユニット(RSU)との深層情報融合による自動運転車の認識を高める能力により、最近大きな研究関心を集めており、閉塞の影響を最小限に抑えることができる。
大幅な進歩が見られたが、これらの手法は、特に注釈付きRSUデータを必要とするため、実世界の展開において大きなハードルを生んでいる。
手動でトレーニングに必要な大量のRSUデータを注釈付けするのは、多くの交差点と点雲のアノテートにかかわる労力を考えると、違法に高価である。
本研究では、教師なしオブジェクト発見に基づくRSUのラベル効率の高いオブジェクト検出手法を考案することで、この問題に対処する。
本稿では,2つの新たなモジュールについて紹介する。1つは点雲の時空間集約に基づく物体発見のためのモジュールであり,もう1つは改良のためのモジュールである。
さらに、アノテーション付きデータのごく一部を微調整することで、オブジェクト発見モデルが完全に教師されたモデルとの性能ギャップを狭めるか、あるいは超えることを実証する。
シミュレーションおよび実世界のデータセットを用いて大規模な実験を行い,本手法の評価を行った。
関連論文リスト
- Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
本稿では,物体検出のための半教師付き学習における27の最先端開発について概説する。
データ拡張テクニック、擬似ラベル戦略、一貫性の正則化、敵の訓練方法などをカバーする。
我々は,既存の課題を克服し,物体検出のための半教師あり学習における新たな方向性を探るため,さらなる研究の関心を喚起することを目的としている。
論文 参考訳(メタデータ) (2024-07-11T12:58:13Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
本研究では,複数のLiDARシステムの必要性を緩和し,無駄な3Dアノテーションプロセスを簡単にする,革新的なフレームワークを提案する。
2次元境界箱検出と抽出された高さ情報を用いて,人間の介入なしに3次元境界箱を自動的に生成することができる。
論文 参考訳(メタデータ) (2024-01-13T01:22:20Z) - Refining the ONCE Benchmark with Hyperparameter Tuning [45.55545585587993]
本研究は、ポイントクラウドデータに対する半教師付き学習アプローチの評価に焦点を当てる。
データアノテーションは、LiDARアプリケーションのコンテキストにおいて最も重要である。
従来の半教師付き手法による改善は,従来考えられていたほど深くない可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-10T13:39:07Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
自己教師付き方法で訓練されたモデルから特徴を再構成することは、完全に教師なしの方法でオブジェクト中心表現が生じるための十分な訓練信号であることを示す。
我々のアプローチであるDINOSAURは、シミュレーションデータ上で既存のオブジェクト中心学習モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-09-29T15:24:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
融解したLiDAR点雲と単一LiDAR点雲との差について検討した。
抽出した軌道の評価は, 融合インフラストラクチャーアプローチが追跡結果を著しく増加させ, 数cm以内の精度に達することを示す。
論文 参考訳(メタデータ) (2020-06-22T10:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。