Dynamic D2D-Assisted Federated Learning over O-RAN: Performance Analysis, MAC Scheduler, and Asymmetric User Selection
- URL: http://arxiv.org/abs/2404.06324v1
- Date: Tue, 9 Apr 2024 14:03:04 GMT
- Title: Dynamic D2D-Assisted Federated Learning over O-RAN: Performance Analysis, MAC Scheduler, and Asymmetric User Selection
- Authors: Payam Abdisarabshali, Kwang Taik Kim, Michael Langberg, Weifeng Su, Seyyedali Hosseinalipour,
- Abstract summary: Realworld wireless networks are susceptible to temporal variations of wireless channel capacity and users.
We incorporate multi-granular dynamics (MSDs) into FL, including (M1) discrete wireless channel, by a set of events, called $mathscrD$Events, and (M2) dynamic datasets of users.
We propose a hierarchical device-to-device (D2D)-assisted model training, (ii) dynamic control decisions through dedicated O-RAN MAC schedulers, and (iii) asymmetric user selection.
- Score: 13.408764465010687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing studies on federated learning (FL) are mostly focused on system orchestration for static snapshots of the network and making static control decisions (e.g., spectrum allocation). However, real-world wireless networks are susceptible to temporal variations of wireless channel capacity and users' datasets. In this paper, we incorporate multi-granular system dynamics (MSDs) into FL, including (M1) dynamic wireless channel capacity, captured by a set of discrete-time events, called $\mathscr{D}$-Events, and (M2) dynamic datasets of users. The latter is characterized by (M2-a) modeling the dynamics of user's dataset size via an ordinary differential equation and (M2-b) introducing dynamic model drift}, formulated via a partial differential inequality} drawing concrete analytical connections between the dynamics of users' datasets and FL accuracy. We then conduct FL orchestration under MSDs by introducing dynamic cooperative FL with dedicated MAC schedulers (DCLM), exploiting the unique features of open radio access network (O-RAN). DCLM proposes (i) a hierarchical device-to-device (D2D)-assisted model training, (ii) dynamic control decisions through dedicated O-RAN MAC schedulers, and (iii) asymmetric user selection. We provide extensive theoretical analysis to study the convergence of DCLM. We then optimize the degrees of freedom (e.g., user selection and spectrum allocation) in DCLM through a highly non-convex optimization problem. We develop a systematic approach to obtain the solution for this problem, opening the door to solving a broad variety of network-aware FL optimization problems. We show the efficiency of DCLM via numerical simulations and provide a series of future directions.
Related papers
- Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
Federated learning (FedL) distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server.
FedL ignores two important characteristics of contemporary wireless networks: (i) the network may contain heterogeneous communication/computation resources, and (ii) there may be significant overlaps in devices' local data distributions.
We develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading.
arXiv Detail & Related papers (2023-11-07T21:17:59Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
Federated Learning (FL) has emerged as a promising approach for privacy preservation.
This article investigates the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks.
We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss.
arXiv Detail & Related papers (2023-03-29T16:36:42Z) - PSNet: Parallel Symmetric Network for Video Salient Object Detection [85.94443548452729]
We propose a VSOD network with up and down parallel symmetry, named PSNet.
Two parallel branches with different dominant modalities are set to achieve complete video saliency decoding.
arXiv Detail & Related papers (2022-10-12T04:11:48Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Device Sampling for Heterogeneous Federated Learning: Theory,
Algorithms, and Implementation [24.084053136210027]
We develop a sampling methodology based on graph sequential convolutional networks (GCNs)
We find that our methodology while sampling less than 5% of all devices outperforms conventional federated learning (FedL) substantially both in terms of trained model accuracy and required resource utilization.
arXiv Detail & Related papers (2021-01-04T05:59:50Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.