論文の概要: Rethinking How to Evaluate Language Model Jailbreak
- arxiv url: http://arxiv.org/abs/2404.06407v3
- Date: Tue, 7 May 2024 14:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 19:03:36.692863
- Title: Rethinking How to Evaluate Language Model Jailbreak
- Title(参考訳): 言語モデルジェイルブレイクを評価する方法の再考
- Authors: Hongyu Cai, Arjun Arunasalam, Leo Y. Lin, Antonio Bianchi, Z. Berkay Celik,
- Abstract要約: 言語モデルジェイルブレイクを評価するために, 3つの指標, 保護違反, 情報性, 相対真理性を提案する。
3つの悪意のある意図的データセットと3つのジェイルブレイクシステムから生成されたベンチマークデータセットで、我々の測定値を評価する。
- 参考スコア(独自算出の注目度): 16.301224741410312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have become increasingly integrated with various applications. To ensure that LLMs do not generate unsafe responses, they are aligned with safeguards that specify what content is restricted. However, such alignment can be bypassed to produce prohibited content using a technique commonly referred to as jailbreak. Different systems have been proposed to perform the jailbreak automatically. These systems rely on evaluation methods to determine whether a jailbreak attempt is successful. However, our analysis reveals that current jailbreak evaluation methods have two limitations. (1) Their objectives lack clarity and do not align with the goal of identifying unsafe responses. (2) They oversimplify the jailbreak result as a binary outcome, successful or not. In this paper, we propose three metrics, safeguard violation, informativeness, and relative truthfulness, to evaluate language model jailbreak. Additionally, we demonstrate how these metrics correlate with the goal of different malicious actors. To compute these metrics, we introduce a multifaceted approach that extends the natural language generation evaluation method after preprocessing the response. We evaluate our metrics on a benchmark dataset produced from three malicious intent datasets and three jailbreak systems. The benchmark dataset is labeled by three annotators. We compare our multifaceted approach with three existing jailbreak evaluation methods. Experiments demonstrate that our multifaceted evaluation outperforms existing methods, with F1 scores improving on average by 17% compared to existing baselines. Our findings motivate the need to move away from the binary view of the jailbreak problem and incorporate a more comprehensive evaluation to ensure the safety of the language model.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なアプリケーションとますます統合されている。
LLMが安全でない応答を生成しないことを保証するため、制限されたコンテンツを指定するセーフガードと整合している。
しかし、このようなアライメントは、一般的にジェイルブレイクと呼ばれる技法を用いて禁止コンテンツを作成するためにバイパスすることができる。
ジェイルブレイクを自動実行する様々なシステムが提案されている。
これらのシステムは、ジェイルブレイクの試みが成功したかどうかを判断するために評価手法に依存している。
しかし,本分析の結果,現在の脱獄評価法には2つの限界があることが判明した。
1) 目的は明確さを欠き, 安全でない応答を識別する目標と一致しない。
2) 2つの結果としてジェイルブレイク結果を過度に単純化する。
本稿では,言語モデルジェイルブレイクを評価するために,保護侵害,情報性,相対真理性の3つの指標を提案する。
さらに、これらの指標が、異なる悪意あるアクターの目標とどのように相関しているかを示す。
これらのメトリクスを計算するために,応答前処理後の自然言語生成評価手法を拡張する多面的手法を提案する。
3つの悪意のある意図的データセットと3つのジェイルブレイクシステムから生成されたベンチマークデータセットで、我々の測定値を評価する。
ベンチマークデータセットには3つのアノテーションがラベル付けされている。
多面的アプローチと既存の3つのジェイルブレイク評価手法を比較した。
実験の結果,F1スコアは既存のベースラインに比べて平均17%向上した。
以上の結果から,脱獄問題のバイナリビューから脱却し,言語モデルの安全性を確保するために,より包括的な評価を組み込むことの必要性が示唆された。
関連論文リスト
- JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation [22.75124155879712]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に弱いままである。
本稿では,JBShield-DとJBShield-Mの2つの主要コンポーネントからなる総合的ジェイルブレイク防御フレームワークJBShieldを提案する。
論文 参考訳(メタデータ) (2025-02-11T13:50:50Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - JailbreakEval: An Integrated Toolkit for Evaluating Jailbreak Attempts Against Large Language Models [21.854909839996612]
ジェイルブレイク攻撃は、有害な応答を生成するために大規模言語モデル(LLM)を誘導する。
ジェイルブレイクの評価には合意がない。
JailbreakEvalは、jailbreakの試みを評価するツールキットである。
論文 参考訳(メタデータ) (2024-06-13T16:59:43Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models [123.66104233291065]
ジェイルブレイク攻撃は、大きな言語モデル(LLM)が有害、非倫理的、またはその他の不快なコンテンツを生成する原因となる。
これらの攻撃を評価することは、現在のベンチマークと評価テクニックの収集が適切に対処していない、多くの課題を提示します。
JailbreakBenchは、以下のコンポーネントを備えたオープンソースのベンチマークである。
論文 参考訳(メタデータ) (2024-03-28T02:44:02Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃の構築と評価を容易にする統合フレームワークであるEasyJailbreakを紹介する。
Selector、Mutator、Constraint、Evaluatorの4つのコンポーネントを使ってJailbreak攻撃を構築する。
10の異なるLSMで検証した結果、さまざまなジェイルブレイク攻撃で平均60%の侵入確率で重大な脆弱性が判明した。
論文 参考訳(メタデータ) (2024-03-18T18:39:53Z) - A StrongREJECT for Empty Jailbreaks [72.8807309802266]
StrongREJECTは、ジェイルブレイクのパフォーマンスを評価するための高品質なベンチマークである。
これは、被害者モデルが禁止されたプロンプトに対する応答の有害性を評価する。
それは、ジェイルブレイクの有効性の人間の判断と最先端の合意を達成します。
論文 参考訳(メタデータ) (2024-02-15T18:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。