論文の概要: Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models
- arxiv url: http://arxiv.org/abs/2505.22271v1
- Date: Wed, 28 May 2025 11:57:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.585868
- Title: Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models
- Title(参考訳): テスト時間免疫:(マルチモーダル)大規模言語モデルに対するジェイルブレイクに対する普遍的な防御フレームワーク
- Authors: Yongcan Yu, Yanbo Wang, Ran He, Jian Liang,
- Abstract要約: テストタイム免疫(TIM)は、自己進化的な方法で様々なジェイルブレイク攻撃に対して適応的に防御することができる。
テストタイム免疫(TIM)は、自己進化的な方法で様々なジェイルブレイク攻撃に対して適応的に防御することができる。
- 参考スコア(独自算出の注目度): 80.66766532477973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While (multimodal) large language models (LLMs) have attracted widespread attention due to their exceptional capabilities, they remain vulnerable to jailbreak attacks. Various defense methods are proposed to defend against jailbreak attacks, however, they are often tailored to specific types of jailbreak attacks, limiting their effectiveness against diverse adversarial strategies. For instance, rephrasing-based defenses are effective against text adversarial jailbreaks but fail to counteract image-based attacks. To overcome these limitations, we propose a universal defense framework, termed Test-time IMmunization (TIM), which can adaptively defend against various jailbreak attacks in a self-evolving way. Specifically, TIM initially trains a gist token for efficient detection, which it subsequently applies to detect jailbreak activities during inference. When jailbreak attempts are identified, TIM implements safety fine-tuning using the detected jailbreak instructions paired with refusal answers. Furthermore, to mitigate potential performance degradation in the detector caused by parameter updates during safety fine-tuning, we decouple the fine-tuning process from the detection module. Extensive experiments on both LLMs and multimodal LLMs demonstrate the efficacy of TIM.
- Abstract(参考訳): マルチモーダル(multimodal)な大規模言語モデル(LLM)は、例外的な能力のために広く注目を集めているが、Jailbreak攻撃に弱いままである。
ジェイルブレイク攻撃を防御するために様々な防御方法が提案されているが、しばしば特定の種類のジェイルブレイク攻撃に適応し、様々な敵の戦略に対する効果を制限する。
例えば、リフレージングベースの防御は、テキストの敵対的ジェイルブレイクに対して有効であるが、画像ベースの攻撃には対処できない。
これらの制限を克服するために,テストタイム免疫(TIM)と呼ばれる普遍的な防御フレームワークを提案する。
具体的には、TIMは最初、効率的な検出のためにgistトークンをトレーニングし、その後、推論中のjailbreakアクティビティを検出するために適用される。
ジェイルブレイクが特定されると、TIMは検出されたジェイルブレイク命令と拒絶応答を組み合わせて安全性の微調整を行う。
さらに,安全微調整時のパラメータ更新による検出モジュールの性能劣化を緩和するため,検出モジュールから微調整プロセスを分離する。
LLMとMultimodal LLMの併用実験により,TIMの有効性が示された。
関連論文リスト
- One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs [13.54228868302755]
ArrAttackは、防衛された大規模言語モデル(LLM)をターゲットにした攻撃方法である。
ArrAttackは、様々な防御措置をバイパスできる堅牢なジェイルブレイクプロンプトを自動的に生成する。
私たちの仕事は、ジェイルブレイク攻撃と防衛のギャップを埋め、堅牢なジェイルブレイクプロンプトを生成するための新たな視点を提供します。
論文 参考訳(メタデータ) (2025-05-23T08:02:38Z) - DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
我々は,LDMのジェイルブレイク攻撃に対する防御能力を向上する,微調整不要な防御手法であるDETAMを紹介する。
具体的には,ジェイルブレイク攻撃に敏感なアテンションヘッドを識別するために,防衛の成功と失敗の間のアテンションスコアの差を分析した。
推論中、攻撃トークンからの干渉を最小限に抑え、ユーザーの中核的な意図を強調するために注意を向ける。
論文 参考訳(メタデータ) (2025-04-18T09:02:12Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、Multimodal Large Language Models (MLLM) はジェイルブレイク攻撃に対して脆弱である。
我々は,ジェイルブレイク攻撃に対する防御のために,制御復号化による安全な報酬モデルを活用する推論時防御フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
我々は,少数の攻撃を観測した後に,脱獄のクラス全体をブロックするために,迅速な応答手法を開発した。
我々は5つの迅速応答法を評価し,それぞれがジェイルブレイク増殖を利用した。
我々の最強の方法は、ジェイルブレイクの非分配セットで240以上、アウト・オブ・ディストリビューションセットで15以上、攻撃成功率で240以上削減する。
論文 参考訳(メタデータ) (2024-11-12T02:44:49Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。