Learning Locally Interacting Discrete Dynamical Systems: Towards Data-Efficient and Scalable Prediction
- URL: http://arxiv.org/abs/2404.06460v2
- Date: Tue, 28 May 2024 00:53:07 GMT
- Title: Learning Locally Interacting Discrete Dynamical Systems: Towards Data-Efficient and Scalable Prediction
- Authors: Beomseok Kang, Harshit Kumar, Minah Lee, Biswadeep Chakraborty, Saibal Mukhopadhyay,
- Abstract summary: Local dynamical systems exhibit complex global dynamics from local, relatively simple, and often interactions between dynamic elements.
We present Attentive Recurrent Cellular Automata (AR-NCA), to effectively discover unknown local state transition rules.
AR-NCA exhibits the superior generalizability across various system configurations.
- Score: 16.972017028598597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Locally interacting dynamical systems, such as epidemic spread, rumor propagation through crowd, and forest fire, exhibit complex global dynamics originated from local, relatively simple, and often stochastic interactions between dynamic elements. Their temporal evolution is often driven by transitions between a finite number of discrete states. Despite significant advancements in predictive modeling through deep learning, such interactions among many elements have rarely explored as a specific domain for predictive modeling. We present Attentive Recurrent Neural Cellular Automata (AR-NCA), to effectively discover unknown local state transition rules by associating the temporal information between neighboring cells in a permutation-invariant manner. AR-NCA exhibits the superior generalizability across various system configurations (i.e., spatial distribution of states), data efficiency and robustness in extremely data-limited scenarios even in the presence of stochastic interactions, and scalability through spatial dimension-independent prediction.
Related papers
- LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
We introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS)
LINOCS is a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data.
We demonstrate LINOCS' ability to recover the ground truth dynamical operators underlying synthetic time-series data.
arXiv Detail & Related papers (2024-04-28T18:16:58Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
We will explore the possibility of learning a discrete-event simulation representation of complex system dynamics.
Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
arXiv Detail & Related papers (2022-05-04T21:33:56Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
Many dynamic processes are involved with interacting variables, from physical systems to sociological analysis.
Our goal is to represent a system with a part-whole hierarchy and discover the implied dependencies among intra-system variables.
The proposed architecture consists of (i) a perceptive module that extracts a hierarchical and temporally consistent representation of the observation at multiple levels, (ii) a deductive module for determining the relational connection between neurons at each level, and (iii) a statistical module that can predict the future by conditioning on the temporal distributional estimation.
arXiv Detail & Related papers (2021-06-01T06:45:56Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
arXiv Detail & Related papers (2020-01-13T03:45:21Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.