Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2404.06527v2
- Date: Fri, 25 Oct 2024 15:25:20 GMT
- Title: Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms
- Authors: Ana Clara das Neves Silva, Clebson Cruz,
- Abstract summary: We investigate the use of variational quantum algorithms for simulating the thermodynamic properties of dinuclear metal complexes.
The results demonstrate the effectiveness of variational quantum algorithms in simulating thermal states and exploring the thermodynamic properties of low-dimensional molecular magnetic systems.
- Score: 0.0
- License:
- Abstract: In this paper, we investigate the use of variational quantum algorithms for simulating the thermodynamic properties of dinuclear metal complexes. Our study highlights the potential of quantum computing to transform advanced simulations and provide insights into the physical behavior of quantum systems. The results demonstrate the effectiveness of variational quantum algorithms in simulating thermal states and exploring the thermodynamic properties of low-dimensional molecular magnetic systems. The findings from this research contribute to broadening our understanding of quantum systems and pave the way for future advancements in materials science through quantum computing.
Related papers
- Quantum Thermodynamics in Spin Systems: A Review of Cycles and Applications [0.0]
Quantum thermodynamics is a powerful theoretical tool for assessing the suitability of quantum materials as platforms for novel technologies.
In this Review, we cover the mathematical formulation used to model the quantum thermodynamic behavior of small-scale systems.
We discuss theoretical results obtained after applying this approach to model Heisenberg-like spin systems.
arXiv Detail & Related papers (2024-11-19T12:51:32Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Exploring quantum thermodynamics with NMR [0.0]
Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
arXiv Detail & Related papers (2023-03-15T20:21:10Z) - Variational Quantum Simulations of Finite-Temperature Dynamical
Properties via Thermofield Dynamics [19.738342279357845]
We present a variational quantum simulation protocol based on the thermofield dynamics formalism.
Our approach is capable of simulating non-equilibrium phenomena which have not been previously explored with quantum computers.
arXiv Detail & Related papers (2022-06-11T17:22:55Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Simulating Energy Transfer in Molecular Systems with Digital Quantum
Computers [8.271013526496906]
Quantum computers have the potential to simulate chemical systems beyond the capability of classical computers.
We extend near-term quantum simulations of chemistry to time-dependent processes by simulating energy transfer in organic semiconducting molecules.
Our approach opens up new opportunities for modeling quantum dynamics in chemical, biological and material systems with quantum computers.
arXiv Detail & Related papers (2021-01-18T05:08:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.