Exploring quantum thermodynamics with NMR
- URL: http://arxiv.org/abs/2303.08917v1
- Date: Wed, 15 Mar 2023 20:21:10 GMT
- Title: Exploring quantum thermodynamics with NMR
- Authors: Carlos H. S. Vieira, Jefferson L. D. de Oliveira, Jonas F. G. Santos,
Pedro R. Dieguez, and Roberto M. Serra
- Abstract summary: Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum thermodynamics seeks to extend non-equilibrium stochastic
thermodynamics to small quantum systems where non-classical features are
essential to its description. Such a research area has recently provided
meaningful theoretical and experimental advances by exploring the wealth and
the power of quantum features along with informational aspects of a system's
thermodynamics. The relevance of such investigations is related to the fact
that quantum technological devices are currently at the forefront of science
and engineering applications. This short review article provides an overview of
some concepts in quantum thermodynamics highlighting test-of-principles
experiments using nuclear magnetic resonance techniques.
Related papers
- Quantum Thermodynamics [0.0]
Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
arXiv Detail & Related papers (2024-06-27T14:28:35Z) - Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms [0.0]
We investigate the use of variational quantum algorithms for simulating the thermodynamic properties of dinuclear metal complexes.
The results demonstrate the effectiveness of variational quantum algorithms in simulating thermal states and exploring the thermodynamic properties of low-dimensional molecular magnetic systems.
arXiv Detail & Related papers (2024-04-09T15:09:54Z) - Quantum Thermodynamics of Small Systems: The Anyonic Otto Engine [0.0]
We study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons.
arXiv Detail & Related papers (2024-01-14T00:09:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Engines and Refrigerators [0.0]
Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work.
In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play.
Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations.
arXiv Detail & Related papers (2023-02-01T19:46:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum Thermodynamics and Quantum Coherence Engines [0.0]
Close relationship between information and energy motivates us to explore if similar quantum benefits can be found in energy technologies.
Investigation of performance limits for a broader class of information-energy machines is the subject of the rapidly emerging field of quantum thermodynamics.
arXiv Detail & Related papers (2020-09-09T16:09:14Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.