論文の概要: The Impact of Print-Scanning in Heterogeneous Morph Evaluation Scenarios
- arxiv url: http://arxiv.org/abs/2404.06559v2
- Date: Tue, 3 Sep 2024 01:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 18:50:14.596650
- Title: The Impact of Print-Scanning in Heterogeneous Morph Evaluation Scenarios
- Title(参考訳): 不均一な形態評価シナリオにおける印刷スキャンの影響
- Authors: Richard E. Neddo, Zander W. Blasingame, Chen Liu,
- Abstract要約: 印刷スキャンがモルヒネ攻撃検出に与える影響について, 一連の評価を通じて検討した。
実験の結果,MMPMR(Mated Morph Presentation Match Rate)を最大8.48%向上できることがわかった。
S-MAD (Single-image Morphing Detection Detection) アルゴリズムがプリントスキャンされた形態を検出するように訓練されていない場合、MACER (Morphing Classification Err rate) は96.12%まで増加する。
- 参考スコア(独自算出の注目度): 1.9035583634286277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face morphing attacks pose an increasing threat to face recognition (FR) systems. A morphed photo contains biometric information from two different subjects to take advantage of vulnerabilities in FRs. These systems are particularly susceptible to attacks when the morphs are subjected to print-scanning to mask the artifacts generated during the morphing process. We investigate the impact of print-scanning on morphing attack detection through a series of evaluations on heterogeneous morphing attack scenarios. Our experiments show that we can increase the Mated Morph Presentation Match Rate (MMPMR) by up to 8.48%. Furthermore, when a Single-image Morphing Attack Detection (S-MAD) algorithm is not trained to detect print-scanned morphs the Morphing Attack Classification Error Rate (MACER) can increase by up to 96.12%, indicating significant vulnerability.
- Abstract(参考訳): 顔変形攻撃は、顔認識(FR)システムに対する脅威が増大する。
形態写真には、FRの脆弱性を利用するために、2つの異なる被験者の生体情報が含まれている。
これらのシステムは、モルヒネが印刷スキャンの対象となり、モルヒネの過程で生成されたアーティファクトを隠蔽する場合、特に攻撃を受けやすい。
印刷スキャンが異質な形態素攻撃シナリオに対する一連の評価を通じて形態素攻撃検出に与える影響について検討する。
実験の結果,MMPMR(Mated Morph Presentation Match Rate)を最大8.48%向上できることがわかった。
さらに、プリントスキャンされた形態を検出するためにS-MAD(Sing-image Morphing Attack Detection)アルゴリズムが訓練されていない場合、MACER(Morphing Attack Classification Err rate)は96.12%増加し、重大な脆弱性を示す。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - LADIMO: Face Morph Generation through Biometric Template Inversion with Latent Diffusion [5.602947425285195]
顔改ざん攻撃は、顔認識システムに深刻なセキュリティ脅威をもたらす。
本稿では,2つの顔認識の埋め込みにおいて,表現レベルの顔形態形成手法であるLADIMOを提案する。
顔形態変種は個々の攻撃成功率を持ち、形態的攻撃ポテンシャルを最大化できることを示す。
論文 参考訳(メタデータ) (2024-10-10T14:41:37Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Face Morphing Attack Detection with Denoising Diffusion Probabilistic
Models [0.0]
モールフされた顔画像は、様々な悪意のある目的のために誰かの身元を偽装するために使用することができる。
既存のMAD技術は、ボナフィドやモルフィド画像の例から学ぶ識別モデルに依存している。
本研究では,ボナファイド画像の特徴からのみ学習できる新しい拡散型MAD法を提案する。
論文 参考訳(メタデータ) (2023-06-27T18:19:45Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
顔変形に対するスタイルGANベースのアプローチが主要な技術である。
本稿では,顔の変形に対する変換器ベースの代替手段を提案し,その利点をStyleGANベースの方法と比較した。
論文 参考訳(メタデータ) (2023-02-18T19:09:11Z) - Leveraging Diffusion For Strong and High Quality Face Morphing Attacks [2.0795007613453445]
顔形態攻撃は、2つの異なるアイデンティティから生体特性からなる形態像を提示することにより、顔認識(FR)システムを騙そうとする。
画像の視覚的忠実度を改善するために拡散型アーキテクチャを用いた新しいモーフィング攻撃を提案する。
論文 参考訳(メタデータ) (2023-01-10T21:50:26Z) - Face Morphing Attacks and Face Image Quality: The Effect of Morphing and
the Unsupervised Attack Detection by Quality [6.889667606945215]
形態形成過程が知覚的画像品質と顔認識における画像有用性の両方に影響を及ぼす可能性を理論的に論じる。
本研究は、顔画像品質測定と顔画像有効性測定の両方を含む、顔画像品質に対するモーフィングの効果を広範囲に分析する。
本研究は、この効果に基づいて、品質スコアに基づいて、教師なしモーフィング攻撃検出(MAD)を行う可能性について検討する。
論文 参考訳(メタデータ) (2022-08-11T15:12:50Z) - Deep Image Destruction: A Comprehensive Study on Vulnerability of Deep
Image-to-Image Models against Adversarial Attacks [104.8737334237993]
本稿では,敵対的攻撃に対する深部画像対画像モデルの脆弱性に関する包括的調査を行う。
一般的な5つの画像処理タスクでは、さまざまな観点から16の深いモデルが分析される。
画像分類タスクとは異なり、画像間タスクの性能劣化は様々な要因によって大きく異なることが示される。
論文 参考訳(メタデータ) (2021-04-30T14:20:33Z) - On the Influence of Ageing on Face Morph Attacks: Vulnerability and
Detection [12.936155415524937]
顔認識システム(FRS)は境界制御アプリケーションに広く採用されている。
顔形態形成工程は、複数のデータ被験者の画像を使用し、画像ブレンディング操作を行い、高品質な画像を生成する。
生成した形態画像は、合成画像に寄与するデータ対象の生体特性と類似した視覚特性を示す。
論文 参考訳(メタデータ) (2020-07-06T12:32:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。