MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2404.06564v3
- Date: Sun, 14 Apr 2024 09:14:23 GMT
- Title: MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
- Authors: Haoyang He, Yuhu Bai, Jiangning Zhang, Qingdong He, Hongxu Chen, Zhenye Gan, Chengjie Wang, Xiangtai Li, Guanzhong Tian, Lei Xie,
- Abstract summary: Mamba-based models with superior long-range modeling and linear efficiency have garnered substantial attention.
MambaAD consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales.
The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi- kernel convolutions operations, effectively captures both long-range and local information.
- Score: 53.03687787922032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness.
Related papers
- STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems.
Most existing methods based on CNNs and transformers still suffer from substantial computational burdens.
We propose a lightweight and effective Mamba-based network named STNMamba to enhance the learning of spatial-temporal normality.
arXiv Detail & Related papers (2024-12-28T08:49:23Z) - Enhancing Online Continual Learning with Plug-and-Play State Space Model and Class-Conditional Mixture of Discretization [72.81319836138347]
Online continual learning (OCL) seeks to learn new tasks from data streams that appear only once, while retaining knowledge of previously learned tasks.
Most existing methods rely on replay, focusing on enhancing memory retention through regularization or distillation.
We introduce a plug-and-play module, S6MOD, which can be integrated into most existing methods and directly improve adaptability.
arXiv Detail & Related papers (2024-12-24T05:25:21Z) - TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models [0.0]
We propose replacing time-oriented Transformers with State-Space Models (SSM)
We develop a model that integrates SSM, Graph Neural Networks, and node-oriented Transformers to achieve enhanced representations.
arXiv Detail & Related papers (2024-10-08T11:10:06Z) - PPMamba: A Pyramid Pooling Local Auxiliary SSM-Based Model for Remote Sensing Image Semantic Segmentation [1.5136939451642137]
This paper proposes a novel network called Pyramid Pooling Mamba (PPMamba), which integrates CNN and Mamba for semantic segmentation tasks.
PPMamba achieves competitive performance compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-10T08:08:50Z) - Mamba-based Light Field Super-Resolution with Efficient Subspace Scanning [48.99361249764921]
Transformer-based methods have demonstrated impressive performance in 4D light field (LF) super-resolution.
However, their quadratic complexity hinders the efficient processing of high resolution 4D inputs.
We propose a Mamba-based Light Field Super-Resolution method, named MLFSR, by designing an efficient subspace scanning strategy.
arXiv Detail & Related papers (2024-06-23T11:28:08Z) - LFMamba: Light Field Image Super-Resolution with State Space Model [28.426889157353028]
We introduce an SSM-based network for light field image super-resolution termed LFMamba.
Experimental results on LF benchmarks demonstrate the superior performance of LFMamba.
We expect that our LFMamba shed light on effective representation learning of LFs with state space models.
arXiv Detail & Related papers (2024-06-18T10:13:19Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
We propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD)
The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders.
In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters.
arXiv Detail & Related papers (2023-01-30T16:21:18Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.