LFMamba: Light Field Image Super-Resolution with State Space Model
- URL: http://arxiv.org/abs/2406.12463v1
- Date: Tue, 18 Jun 2024 10:13:19 GMT
- Title: LFMamba: Light Field Image Super-Resolution with State Space Model
- Authors: Wang xia, Yao Lu, Shunzhou Wang, Ziqi Wang, Peiqi Xia, Tianfei Zhou,
- Abstract summary: We introduce an SSM-based network for light field image super-resolution termed LFMamba.
Experimental results on LF benchmarks demonstrate the superior performance of LFMamba.
We expect that our LFMamba shed light on effective representation learning of LFs with state space models.
- Score: 28.426889157353028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed significant advancements in light field image super-resolution (LFSR) owing to the progress of modern neural networks. However, these methods often face challenges in capturing long-range dependencies (CNN-based) or encounter quadratic computational complexities (Transformer-based), which limit their performance. Recently, the State Space Model (SSM) with selective scanning mechanism (S6), exemplified by Mamba, has emerged as a superior alternative in various vision tasks compared to traditional CNN- and Transformer-based approaches, benefiting from its effective long-range sequence modeling capability and linear-time complexity. Therefore, integrating S6 into LFSR becomes compelling, especially considering the vast data volume of 4D light fields. However, the primary challenge lies in \emph{designing an appropriate scanning method for 4D light fields that effectively models light field features}. To tackle this, we employ SSMs on the informative 2D slices of 4D LFs to fully explore spatial contextual information, complementary angular information, and structure information. To achieve this, we carefully devise a basic SSM block characterized by an efficient SS2D mechanism that facilitates more effective and efficient feature learning on these 2D slices. Based on the above two designs, we further introduce an SSM-based network for LFSR termed LFMamba. Experimental results on LF benchmarks demonstrate the superior performance of LFMamba. Furthermore, extensive ablation studies are conducted to validate the efficacy and generalization ability of our proposed method. We expect that our LFMamba shed light on effective representation learning of LFs with state space models.
Related papers
- Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion [46.82975707531064]
Selective state space models (SSMs) excel at capturing long-range dependencies in 1D sequential data.
We propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space.
We show that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation.
arXiv Detail & Related papers (2024-10-19T12:56:58Z) - Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
State-space models (SSMs) have showcased effective performance in modeling long-range dependencies with subquadratic complexity.
However, pure SSM-based models still face challenges related to stability and achieving optimal performance on computer vision tasks.
Our paper addresses the challenges of scaling SSM-based models for computer vision, particularly the instability and inefficiency of large model sizes.
arXiv Detail & Related papers (2024-07-18T17:59:58Z) - Mamba-based Light Field Super-Resolution with Efficient Subspace Scanning [48.99361249764921]
Transformer-based methods have demonstrated impressive performance in 4D light field (LF) super-resolution.
However, their quadratic complexity hinders the efficient processing of high resolution 4D inputs.
We propose a Mamba-based Light Field Super-Resolution method, named MLFSR, by designing an efficient subspace scanning strategy.
arXiv Detail & Related papers (2024-06-23T11:28:08Z) - Dual Hyperspectral Mamba for Efficient Spectral Compressive Imaging [102.35787741640749]
We propose a novel Dual Hyperspectral Mamba (DHM) to explore both global long-range dependencies and local contexts for efficient HSI reconstruction.
Specifically, our DHM consists of multiple dual hyperspectral S4 blocks (DHSBs) to restore original HSIs.
arXiv Detail & Related papers (2024-06-01T14:14:40Z) - RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing [19.89130165954241]
Remote sensing image dehazing (RSID) aims to remove nonuniform and physically irregular haze factors for high-quality image restoration.
We propose the first lightweight network on the mamba-based model called RSDhamba in the field of RSID.
arXiv Detail & Related papers (2024-05-16T12:12:07Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
Mamba-based models with superior long-range modeling and linear efficiency have garnered substantial attention.
MambaAD consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales.
The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi- kernel convolutions operations, effectively captures both long-range and local information.
arXiv Detail & Related papers (2024-04-09T18:28:55Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.