論文の概要: GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
- arxiv url: http://arxiv.org/abs/2404.06609v1
- Date: Tue, 9 Apr 2024 20:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 16:08:54.316689
- Title: GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
- Title(参考訳): GOAT-Bench:マルチモード生涯ナビゲーションのベンチマーク
- Authors: Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet, Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi,
- Abstract要約: GOAT-BenchはユニバーサルナビゲーションタスクGO to AnyThing(GOAT)のベンチマークである。
GOATでは、エージェントはカテゴリ名、言語記述、イメージによって指定されたターゲットのシーケンスにナビゲートするように指示される。
我々はGOATタスク上でモノリシックなRLおよびモジュラーメソッドをベンチマークし、その性能をモダリティにわたって分析する。
- 参考スコア(独自算出の注目度): 65.71524410114797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Embodied AI community has made significant strides in visual navigation tasks, exploring targets from 3D coordinates, objects, language descriptions, and images. However, these navigation models often handle only a single input modality as the target. With the progress achieved so far, it is time to move towards universal navigation models capable of handling various goal types, enabling more effective user interaction with robots. To facilitate this goal, we propose GOAT-Bench, a benchmark for the universal navigation task referred to as GO to AnyThing (GOAT). In this task, the agent is directed to navigate to a sequence of targets specified by the category name, language description, or image in an open-vocabulary fashion. We benchmark monolithic RL and modular methods on the GOAT task, analyzing their performance across modalities, the role of explicit and implicit scene memories, their robustness to noise in goal specifications, and the impact of memory in lifelong scenarios.
- Abstract(参考訳): Embodied AIコミュニティは、3D座標、オブジェクト、言語記述、イメージからターゲットを探索する、視覚的なナビゲーションタスクにおいて、大きな進歩を遂げている。
しかし、これらのナビゲーションモデルは、ターゲットとして単一の入力モダリティしか扱わないことが多い。
これまでの進歩により、様々な目標タイプを扱えるユニバーサルナビゲーションモデルに移行し、ロボットとのより効果的なユーザーインタラクションを実現する。
GOAT-BenchはGOAT(GOAT to AnyThing)と呼ばれるユニバーサルナビゲーションタスクのベンチマークである。
このタスクでは、エージェントは、カテゴリ名、言語記述、イメージによって指定されたターゲットのシーケンスをオープン語彙形式でナビゲートするように指示される。
我々は、GOATタスクにおけるモノリシックなRLおよびモジュラーメソッドのベンチマークを行い、その性能、明示的で暗黙的なシーンメモリの役割、目標仕様におけるノイズに対する堅牢性、生涯にわたるシナリオにおけるメモリの影響を分析した。
関連論文リスト
- OpenObject-NAV: Open-Vocabulary Object-Oriented Navigation Based on Dynamic Carrier-Relationship Scene Graph [10.475404599532157]
本稿では、頻繁に使用されるオブジェクトと静的キャリアの関係をキャプチャする。
本稿では,ナビゲーションプロセスをマルコフ決定プロセスとしてモデル化するインスタンスナビゲーション戦略を提案する。
その結果,CRSGを更新することで,移動目標への移動を効率的に行うことができることがわかった。
論文 参考訳(メタデータ) (2024-09-27T13:33:52Z) - Aligning Knowledge Graph with Visual Perception for Object-goal Navigation [16.32780793344835]
オブジェクトゴールナビゲーションのための視覚知覚付きアライニング知識グラフ(AKGVP)を提案する。
提案手法では,階層型シーンアーキテクチャの連続的モデリングを導入し,自然言語記述と視覚知覚との整合性を確保するために,視覚-言語事前学習を活用する。
継続的知識グラフアーキテクチャとマルチモーダル機能アライメントの統合により、ナビゲータは目覚ましいゼロショットナビゲーション能力を持つ。
論文 参考訳(メタデータ) (2024-02-29T06:31:18Z) - Instance-aware Exploration-Verification-Exploitation for Instance ImageGoal Navigation [88.84058353659107]
インスタンスイメージゴールナビゲーション(IIN)は、探索されていない環境でゴールイメージによって表現された指定されたオブジェクトにナビゲートすることを目的としている。
本稿では、インスタンスレベルの画像目標ナビゲーションのための新しいモジュール型ナビゲーションフレームワーク、Exploration-Verification-Exploitation (IEVE)を提案する。
我々の手法は従来の最先端の手法を超越し、古典的セグメンテーションモデル(0.684対0.561成功)またはロバストモデル(0.702対0.561成功)を用いる。
論文 参考訳(メタデータ) (2024-02-25T07:59:10Z) - Zero-Shot Object Goal Visual Navigation With Class-Independent Relationship Network [3.0820097046465285]
ゼロショット(Zero-shot)とは、エージェントが探すべきターゲットがトレーニングフェーズ中にトレーニングされないことを意味する。
本研究では,学習中の目標特徴とナビゲーション能力の結合の問題に対処するために,クラス独立関係ネットワーク(CIRN)を提案する。
本手法は、ゼロショット目標視覚ナビゲーションタスクにおける最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2023-10-15T16:42:14Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
言語駆動型ゼロショットオブジェクトゴールナビゲーション(L-ZSON)のための新しいアルゴリズムLGXを提案する。
このアプローチでは、このタスクにLarge Language Models(LLM)を使用します。
現状のゼロショットオブジェクトナビゲーションをRoboTHOR上で実現し,現在のベースラインよりも27%以上の成功率(SR)向上を実現した。
論文 参考訳(メタデータ) (2023-03-06T20:19:19Z) - ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object
Navigation [75.13546386761153]
我々は,新しいゼロショットオブジェクトナビゲーション手法であるExploration with Soft Commonsense constraints (ESC)を提案する。
ESCは、事前訓練されたモデルのコモンセンス知識を、ナビゲーション経験のないオープンワールドオブジェクトナビゲーションに転送する。
MP3D, HM3D, RoboTHORのベンチマーク実験により, ESC法はベースラインよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2023-01-30T18:37:32Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。