論文の概要: UAV-ON: A Benchmark for Open-World Object Goal Navigation with Aerial Agents
- arxiv url: http://arxiv.org/abs/2508.00288v1
- Date: Fri, 01 Aug 2025 03:23:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.722848
- Title: UAV-ON: A Benchmark for Open-World Object Goal Navigation with Aerial Agents
- Title(参考訳): UAV-ON: 航空エージェントを用いたオープンワールドオブジェクトゴールナビゲーションのベンチマーク
- Authors: Jianqiang Xiao, Yuexuan Sun, Yixin Shao, Boxi Gan, Rongqiang Liu, Yanjing Wu, Weili Gua, Xiang Deng,
- Abstract要約: UAV-ONは、オープンワールド環境における航空エージェントによる大規模目標航法(NavObject)のベンチマークである。
多様な意味領域と複雑な空間レイアウトを備えた14の高忠実なUnreal Engine環境で構成されている。
1270のアノテートされたターゲットオブジェクトを定義し、それぞれがカテゴリ、物理フットプリント、視覚ディスクリプタをエンコードするインスタンスレベルの命令によって特徴付けられる。
- 参考スコア(独自算出の注目度): 5.414995940540323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aerial navigation is a fundamental yet underexplored capability in embodied intelligence, enabling agents to operate in large-scale, unstructured environments where traditional navigation paradigms fall short. However, most existing research follows the Vision-and-Language Navigation (VLN) paradigm, which heavily depends on sequential linguistic instructions, limiting its scalability and autonomy. To address this gap, we introduce UAV-ON, a benchmark for large-scale Object Goal Navigation (ObjectNav) by aerial agents in open-world environments, where agents operate based on high-level semantic goals without relying on detailed instructional guidance as in VLN. UAV-ON comprises 14 high-fidelity Unreal Engine environments with diverse semantic regions and complex spatial layouts, covering urban, natural, and mixed-use settings. It defines 1270 annotated target objects, each characterized by an instance-level instruction that encodes category, physical footprint, and visual descriptors, allowing grounded reasoning. These instructions serve as semantic goals, introducing realistic ambiguity and complex reasoning challenges for aerial agents. To evaluate the benchmark, we implement several baseline methods, including Aerial ObjectNav Agent (AOA), a modular policy that integrates instruction semantics with egocentric observations for long-horizon, goal-directed exploration. Empirical results show that all baselines struggle in this setting, highlighting the compounded challenges of aerial navigation and semantic goal grounding. UAV-ON aims to advance research on scalable UAV autonomy driven by semantic goal descriptions in complex real-world environments.
- Abstract(参考訳): 航空航法は、従来の航法パラダイムが不足している大規模で非構造的な環境でエージェントを動作させることができる。
しかしながら、既存のほとんどの研究はVLN(Vision-and-Language Navigation)パラダイムに従っている。
このギャップに対処するために,オープンワールド環境における航空エージェントによる大規模目標ナビゲーション(ObjectNav)のベンチマークであるUAV-ONを導入する。
UAV-ONは14の高忠実なUnreal Engine環境で構成されており、多様な意味領域と複雑な空間配置を持ち、都市、自然、混在する環境をカバーしている。
1270のアノテート対象オブジェクトを定義し、それぞれがカテゴリ、物理フットプリント、視覚記述子をエンコードするインスタンスレベルの命令によって特徴付けられる。
これらの命令は意味的な目標として機能し、現実的な曖昧さと複雑な推論を航空エージェントに導入する。
このベンチマークを評価するために,Aerial ObjectNav Agent (AOA) などいくつかの基本手法を実装した。
実証的な結果から、すべての基地線がこの設定で苦労していることが示され、航空航法とセマンティックゴールグラウンドディングの複合的な課題が浮き彫りになった。
UAV-ONは、複雑な現実世界環境におけるセマンティックゴール記述によって駆動されるスケーラブルなUAV自律性の研究を進めることを目的としている。
関連論文リスト
- Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding [1.280979348722635]
ビジョン・アンド・ランゲージナビゲーション(VLN)は、自律ロボット工学における長年にわたる課題であり、複雑な環境をナビゲートしながら、エージェントに人間の指示に従う能力を与えることを目的としている。
本研究では,無人航空機(UAV)に適した言語誘導飛行を行うフレームワークであるビジョン・ランゲージ・フライ(VLFly)を提案する。
論文 参考訳(メタデータ) (2025-06-12T14:40:50Z) - SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models [10.671262416557704]
Vision Foundation Models (VFM) は視覚的理解と推論に強力な機能を提供する。
本稿では,VFMの知覚的強度をモデルベースプランナと統合したゼロショットオブジェクトゴールナビゲーションフレームワークを提案する。
本研究では,Habitatシミュレータを用いてHM3Dデータセットに対するアプローチを評価し,提案手法が最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2025-06-04T03:04:54Z) - CityNavAgent: Aerial Vision-and-Language Navigation with Hierarchical Semantic Planning and Global Memory [39.76840258489023]
航空ビジョン・アンド・ランゲージナビゲーション(VLN)では、ドローンが自然言語の指示を解釈し、複雑な都市環境をナビゲートする必要がある。
都市空域VLNの航法複雑性を著しく低減する大規模言語モデル(LLM)を用いたエージェントである textbfCityNavAgent を提案する。
論文 参考訳(メタデータ) (2025-05-08T20:01:35Z) - UAV-VLN: End-to-End Vision Language guided Navigation for UAVs [0.0]
AI誘導の自律性における中核的な課題は、エージェントが以前見えなかった環境で現実的で効果的にナビゲートできるようにすることである。
UAV-VLNは無人航空機(UAV)のための新しいエンドツーエンドビジョンランゲージナビゲーションフレームワークである。
本システムでは,自由形式の自然言語命令を解釈し,視覚的観察に利用し,多様な環境下で実現可能な航空軌道を計画する。
論文 参考訳(メタデータ) (2025-04-30T08:40:47Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
UAV視覚言語ナビゲーションにおける最近の取り組みは、主に地上ベースのVLN設定を採用する。
プラットフォーム,ベンチマーク,方法論という3つの観点からのソリューションを提案する。
論文 参考訳(メタデータ) (2024-10-09T17:29:01Z) - Improving Zero-Shot ObjectNav with Generative Communication [60.84730028539513]
ゼロショットObjectNavの改良手法を提案する。
私たちのアプローチは、接地エージェントが制限され、時には障害のあるビューを持つ可能性があることを考慮に入れています。
論文 参考訳(メタデータ) (2024-08-03T22:55:26Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
エージェントが空中ナビゲーション中に観測された一連の視覚的手がかりを用いて、複数の可能なモダリティによって特定されたターゲットを見つけるという、アクティブなジオローカライゼーション(AGL)の課題を考察する。
GOMAA-Geo は、ゴールモダリティ間のゼロショット一般化のためのゴールモダリティアクティブなジオローカライゼーションエージェントである。
論文 参考訳(メタデータ) (2024-06-04T02:59:36Z) - GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation [65.71524410114797]
GOAT-BenchはユニバーサルナビゲーションタスクGO to AnyThing(GOAT)のベンチマークである。
GOATでは、エージェントはカテゴリ名、言語記述、イメージによって指定されたターゲットのシーケンスにナビゲートするように指示される。
我々はGOATタスク上でモノリシックなRLおよびモジュラーメソッドをベンチマークし、その性能をモダリティにわたって分析する。
論文 参考訳(メタデータ) (2024-04-09T20:40:00Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。