GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
- URL: http://arxiv.org/abs/2404.06609v1
- Date: Tue, 9 Apr 2024 20:40:00 GMT
- Title: GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
- Authors: Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet, Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi,
- Abstract summary: GOAT-Bench is a benchmark for the universal navigation task GO to AnyThing (GOAT)
In GOAT, the agent is directed to navigate to a sequence of targets specified by the category name, language description, or image.
We benchmark monolithic RL and modular methods on the GOAT task, analyzing their performance across modalities.
- Score: 65.71524410114797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Embodied AI community has made significant strides in visual navigation tasks, exploring targets from 3D coordinates, objects, language descriptions, and images. However, these navigation models often handle only a single input modality as the target. With the progress achieved so far, it is time to move towards universal navigation models capable of handling various goal types, enabling more effective user interaction with robots. To facilitate this goal, we propose GOAT-Bench, a benchmark for the universal navigation task referred to as GO to AnyThing (GOAT). In this task, the agent is directed to navigate to a sequence of targets specified by the category name, language description, or image in an open-vocabulary fashion. We benchmark monolithic RL and modular methods on the GOAT task, analyzing their performance across modalities, the role of explicit and implicit scene memories, their robustness to noise in goal specifications, and the impact of memory in lifelong scenarios.
Related papers
- OpenObject-NAV: Open-Vocabulary Object-Oriented Navigation Based on Dynamic Carrier-Relationship Scene Graph [10.475404599532157]
This paper captures the relationships between frequently used objects and their static carriers.
We propose an instance navigation strategy that models the navigation process as a Markov Decision Process.
The results demonstrate that by updating the CRSG, the robot can efficiently navigate to moved targets.
arXiv Detail & Related papers (2024-09-27T13:33:52Z) - Aligning Knowledge Graph with Visual Perception for Object-goal Navigation [16.32780793344835]
We propose the Aligning Knowledge Graph with Visual Perception (AKGVP) method for object-goal navigation.
Our approach introduces continuous modeling of the hierarchical scene architecture and leverages visual-language pre-training to align natural language description with visual perception.
The integration of a continuous knowledge graph architecture and multimodal feature alignment empowers the navigator with a remarkable zero-shot navigation capability.
arXiv Detail & Related papers (2024-02-29T06:31:18Z) - Instance-aware Exploration-Verification-Exploitation for Instance ImageGoal Navigation [88.84058353659107]
Instance ImageGoal Navigation (IIN) aims to navigate to a specified object depicted by a goal image in an unexplored environment.
We propose a new modular navigation framework named Instance-aware Exploration-Verification-Exploitation (IEVE) for instance-level image goal navigation.
Our method surpasses previous state-of-the-art work, with a classical segmentation model (0.684 vs. 0.561 success) or a robust model (0.702 vs. 0.561 success)
arXiv Detail & Related papers (2024-02-25T07:59:10Z) - Zero-Shot Object Goal Visual Navigation With Class-Independent Relationship Network [3.0820097046465285]
"Zero-shot" means that the target the agent needs to find is not trained during the training phase.
We propose the Class-Independent Relationship Network (CIRN) to address the issue of coupling navigation ability with target features during training.
Our method outperforms the current state-of-the-art approaches in the zero-shot object goal visual navigation task.
arXiv Detail & Related papers (2023-10-15T16:42:14Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
We present LGX, a novel algorithm for Language-Driven Zero-Shot Object Goal Navigation (L-ZSON)
Our approach makes use of Large Language Models (LLMs) for this task.
We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline.
arXiv Detail & Related papers (2023-03-06T20:19:19Z) - ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object
Navigation [75.13546386761153]
We present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC)
ESC transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience.
Experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines.
arXiv Detail & Related papers (2023-01-30T18:37:32Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.