History-Augmented Vision-Language Models for Frontier-Based Zero-Shot Object Navigation
- URL: http://arxiv.org/abs/2506.16623v1
- Date: Thu, 19 Jun 2025 21:50:16 GMT
- Title: History-Augmented Vision-Language Models for Frontier-Based Zero-Shot Object Navigation
- Authors: Mobin Habibpour, Fatemeh Afghah,
- Abstract summary: This paper introduces a novel zero-shot ObjectNav framework that pioneers the use of dynamic, history-aware prompting.<n>Our core innovation lies in providing the VLM with action history context, enabling it to generate semantic guidance scores for navigation actions.<n>We also introduce a VLM-assisted waypoint generation mechanism for refining the final approach to detected objects.
- Score: 5.343932820859596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object Goal Navigation (ObjectNav) challenges robots to find objects in unseen environments, demanding sophisticated reasoning. While Vision-Language Models (VLMs) show potential, current ObjectNav methods often employ them superficially, primarily using vision-language embeddings for object-scene similarity checks rather than leveraging deeper reasoning. This limits contextual understanding and leads to practical issues like repetitive navigation behaviors. This paper introduces a novel zero-shot ObjectNav framework that pioneers the use of dynamic, history-aware prompting to more deeply integrate VLM reasoning into frontier-based exploration. Our core innovation lies in providing the VLM with action history context, enabling it to generate semantic guidance scores for navigation actions while actively avoiding decision loops. We also introduce a VLM-assisted waypoint generation mechanism for refining the final approach to detected objects. Evaluated on the HM3D dataset within Habitat, our approach achieves a 46% Success Rate (SR) and 24.8% Success weighted by Path Length (SPL). These results are comparable to state-of-the-art zero-shot methods, demonstrating the significant potential of our history-augmented VLM prompting strategy for more robust and context-aware robotic navigation.
Related papers
- SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models [10.671262416557704]
Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning.<n>We present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner.<n>We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-06-04T03:04:54Z) - TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation [52.422619828854984]
We introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information.<n>To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method.
arXiv Detail & Related papers (2024-11-25T14:27:55Z) - Navigation with VLM framework: Go to Any Language [2.9869976373921916]
Vision Large Language Models (VLMs) have demonstrated remarkable capabilities in reasoning with both language and visual data.
We introduce Navigation with VLM (NavVLM), a framework that harnesses equipment-level VLMs to enable agents to navigate towards any language goal specific or non-specific in open scenes.
We evaluate NavVLM in richly detailed environments from the Matterport 3D (MP3D), Habitat Matterport 3D (HM3D), and Gibson datasets within the Habitat simulator.
arXiv Detail & Related papers (2024-09-18T02:29:00Z) - Cognitive Planning for Object Goal Navigation using Generative AI Models [0.979851640406258]
We present a novel framework for solving the object goal navigation problem that generates efficient exploration strategies.
Our approach enables a robot to navigate unfamiliar environments by leveraging Large Language Models (LLMs) and Large Vision-Language Models (LVLMs)
arXiv Detail & Related papers (2024-03-30T10:54:59Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
We present LGX, a novel algorithm for Language-Driven Zero-Shot Object Goal Navigation (L-ZSON)
Our approach makes use of Large Language Models (LLMs) for this task.
We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline.
arXiv Detail & Related papers (2023-03-06T20:19:19Z) - ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object
Navigation [75.13546386761153]
We present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC)
ESC transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience.
Experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines.
arXiv Detail & Related papers (2023-01-30T18:37:32Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.