UAV-ON: A Benchmark for Open-World Object Goal Navigation with Aerial Agents
- URL: http://arxiv.org/abs/2508.00288v1
- Date: Fri, 01 Aug 2025 03:23:06 GMT
- Title: UAV-ON: A Benchmark for Open-World Object Goal Navigation with Aerial Agents
- Authors: Jianqiang Xiao, Yuexuan Sun, Yixin Shao, Boxi Gan, Rongqiang Liu, Yanjing Wu, Weili Gua, Xiang Deng,
- Abstract summary: UAV-ON is a benchmark for large-scale Object Goal Navigation (NavObject) by aerial agents in open-world environments.<n>It comprises 14 high-fidelity Unreal Engine environments with diverse semantic regions and complex spatial layouts.<n>It defines 1270 annotated target objects, each characterized by an instance-level instruction that encodes category, physical footprint, and visual descriptors.
- Score: 5.414995940540323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aerial navigation is a fundamental yet underexplored capability in embodied intelligence, enabling agents to operate in large-scale, unstructured environments where traditional navigation paradigms fall short. However, most existing research follows the Vision-and-Language Navigation (VLN) paradigm, which heavily depends on sequential linguistic instructions, limiting its scalability and autonomy. To address this gap, we introduce UAV-ON, a benchmark for large-scale Object Goal Navigation (ObjectNav) by aerial agents in open-world environments, where agents operate based on high-level semantic goals without relying on detailed instructional guidance as in VLN. UAV-ON comprises 14 high-fidelity Unreal Engine environments with diverse semantic regions and complex spatial layouts, covering urban, natural, and mixed-use settings. It defines 1270 annotated target objects, each characterized by an instance-level instruction that encodes category, physical footprint, and visual descriptors, allowing grounded reasoning. These instructions serve as semantic goals, introducing realistic ambiguity and complex reasoning challenges for aerial agents. To evaluate the benchmark, we implement several baseline methods, including Aerial ObjectNav Agent (AOA), a modular policy that integrates instruction semantics with egocentric observations for long-horizon, goal-directed exploration. Empirical results show that all baselines struggle in this setting, highlighting the compounded challenges of aerial navigation and semantic goal grounding. UAV-ON aims to advance research on scalable UAV autonomy driven by semantic goal descriptions in complex real-world environments.
Related papers
- Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding [1.280979348722635]
Vision-and-language navigation (VLN) is a long-standing challenge in autonomous robotics, aiming to empower agents with the ability to follow human instructions while navigating complex environments.<n>We propose Vision-Language Fly (VLFly), a framework tailored for Unmanned Aerial Vehicles (UAVs) to execute language-guided flight.
arXiv Detail & Related papers (2025-06-12T14:40:50Z) - SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models [10.671262416557704]
Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning.<n>We present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner.<n>We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-06-04T03:04:54Z) - CityNavAgent: Aerial Vision-and-Language Navigation with Hierarchical Semantic Planning and Global Memory [39.76840258489023]
Aerial vision-and-language navigation (VLN) requires drones to interpret natural language instructions and navigate complex urban environments.<n>We propose textbfCityNavAgent, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN.
arXiv Detail & Related papers (2025-05-08T20:01:35Z) - UAV-VLN: End-to-End Vision Language guided Navigation for UAVs [0.0]
A core challenge in AI-guided autonomy is enabling agents to navigate realistically and effectively in previously unseen environments.<n>We propose UAV-VLN, a novel end-to-end Vision-Language Navigation framework for Unmanned Aerial Vehicles (UAVs)<n>Our system interprets free-form natural language instructions, grounds them into visual observations, and plans feasible aerial trajectories in diverse environments.
arXiv Detail & Related papers (2025-04-30T08:40:47Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
Recent efforts in UAV vision-language navigation predominantly adopt ground-based VLN settings.
We propose solutions from three perspectives: platform, benchmark, and methodology.
arXiv Detail & Related papers (2024-10-09T17:29:01Z) - Improving Zero-Shot ObjectNav with Generative Communication [60.84730028539513]
We propose a new method for improving zero-shot ObjectNav.
Our approach takes into account that the ground agent may have limited and sometimes obstructed view.
arXiv Detail & Related papers (2024-08-03T22:55:26Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation [65.71524410114797]
GOAT-Bench is a benchmark for the universal navigation task GO to AnyThing (GOAT)
In GOAT, the agent is directed to navigate to a sequence of targets specified by the category name, language description, or image.
We benchmark monolithic RL and modular methods on the GOAT task, analyzing their performance across modalities.
arXiv Detail & Related papers (2024-04-09T20:40:00Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.