Game Semantics for Higher-Order Unitary Quantum Computation
- URL: http://arxiv.org/abs/2404.06646v1
- Date: Tue, 9 Apr 2024 22:51:39 GMT
- Title: Game Semantics for Higher-Order Unitary Quantum Computation
- Authors: Samson Abramsky, Radha Jagadeesan,
- Abstract summary: We develop a symmetric monoidal closed category of incorporating games, sums and products, to model quantum computation at higher types.
This model is expressive, capable of representing all unitary operators at base types.
- Score: 0.3222802562733786
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We develop a symmetric monoidal closed category of games, incorporating sums and products, to model quantum computation at higher types. This model is expressive, capable of representing all unitary operators at base types. It is compatible with base types and realizable by unitary operators.
Related papers
- A Quantum-Control Lambda-Calculus with Multiple Measurement Bases [49.1574468325115]
We introduce Lambda-SX, a typed quantum-calculus that supports multiple measurement bases.<n>By tracking duplicability relative to arbitrary bases within the type system, Lambda-SX enables more flexible control and compositional reasoning about measurements.
arXiv Detail & Related papers (2025-06-19T11:59:39Z) - Sequential-Parallel Duality in Prefix Scannable Models [68.39855814099997]
Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba.<n>This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference?
arXiv Detail & Related papers (2025-06-12T17:32:02Z) - The category of anyon sectors for non-abelian quantum double models [0.0]
We study Kitaev's quantum double model for arbitrary finite gauge group in infinite volume.
We organize endomorphisms into a braided monoidal category capturing the fusion and braiding properties of the anyons.
This establishes for the first time the full DHR structure for a class of 2d quantum lattice models with non-abelian anyons.
arXiv Detail & Related papers (2025-03-19T18:00:30Z) - Quantum Cournot model based on general entanglement operator [0.0]
The properties of the Cournot model based on the most general entanglement operator containing quadratic expressions are considered.
The degree of entanglement of games dependent on one and two squeezing parameters and their payoff values in Nash equilibrium are compared.
arXiv Detail & Related papers (2024-06-23T08:24:17Z) - Categorical Quantum Volume Operator [41.94295877935867]
We show a generalization of the quantum volume operator quantifying the volume in curved three-dimensional discrete geometries.
In both cases, we obtain a volume operator that is Hermitian, provided that the input category is unitary.
As an illustrative example, we consider the case of $mathrmSU(2)_k$ and show that the standard $mathrmSU(2)$ volume operator is recovered in the limit $krightarrowinfty$
arXiv Detail & Related papers (2024-06-04T08:37:10Z) - Enriching Diagrams with Algebraic Operations [49.1574468325115]
We extend diagrammatic reasoning in monoidal categories with algebraic operations and equations.
We show how this construction can be used for diagrammatic reasoning of noise in quantum systems.
arXiv Detail & Related papers (2023-10-17T14:12:39Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - The tilted CHSH games: an operator algebraic classification [77.34726150561087]
This article introduces a general systematic procedure for solving any binary-input binary-output game.
We then illustrate on the prominent class of tilted CHSH games.
We derive for those an entire characterisation on the region exhibiting some quantum advantage.
arXiv Detail & Related papers (2023-02-16T18:33:59Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Dualities in one-dimensional quantum lattice models: symmetric
Hamiltonians and matrix product operator intertwiners [0.0]
We present a systematic recipe for generating and classifying duality transformations in one-dimensional quantum lattice systems.
Our construction emphasizes the role of global symmetries, including those described by (non)-abelian groups.
We illustrate this approach for known dualities such as Kramers-Wannier, Jordan-Wigner, Kennedy-Tasaki and the IRF-vertex correspondence.
arXiv Detail & Related papers (2021-12-16T18:22:49Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Prime number factorization using a spinor Bose-Einstein condensate
inspired topological quantum computer [0.0]
We consider the quantum double $mathcalD(Q_8)$ anyon model as a platform to carry out a particular instance of Shor's factorization algorithm.
All necessary quantum gates, less one, can be compiled exactly for this hybrid topological quantum computer.
arXiv Detail & Related papers (2021-05-12T06:06:19Z) - Abelian Neural Networks [48.52497085313911]
We first construct a neural network architecture for Abelian group operations and derive a universal approximation property.
We extend it to Abelian semigroup operations using the characterization of associative symmetrics.
We train our models over fixed word embeddings and demonstrate improved performance over the original word2vec.
arXiv Detail & Related papers (2021-02-24T11:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.