論文の概要: Poisoning Prevention in Federated Learning and Differential Privacy via Stateful Proofs of Execution
- arxiv url: http://arxiv.org/abs/2404.06721v1
- Date: Wed, 10 Apr 2024 04:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 15:39:25.665880
- Title: Poisoning Prevention in Federated Learning and Differential Privacy via Stateful Proofs of Execution
- Title(参考訳): 執行のステートフル証明によるフェデレーション学習と差別化の防止
- Authors: Norrathep Rattanavipanon, Ivan de Oliviera Nunes,
- Abstract要約: フェデレートラーニング(FL)とローカルディファレンシャルプライバシ(LDP)は、ここ数年で多くの注目を集めています。
彼らは毒殺攻撃に弱いという共通の制限を共有している。
本稿では,国家執行の証明という新たなセキュリティ概念に基づいて,この問題を是正するシステムレベルのアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.482161435639506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise in IoT-driven distributed data analytics, coupled with increasing privacy concerns, has led to a demand for effective privacy-preserving and federated data collection/model training mechanisms. In response, approaches such as Federated Learning (FL) and Local Differential Privacy (LDP) have been proposed and attracted much attention over the past few years. However, they still share the common limitation of being vulnerable to poisoning attacks wherein adversaries compromising edge devices feed forged (a.k.a. poisoned) data to aggregation back-ends, undermining the integrity of FL/LDP results. In this work, we propose a system-level approach to remedy this issue based on a novel security notion of Proofs of Stateful Execution (PoSX) for IoT/embedded devices' software. To realize the PoSX concept, we design SLAPP: a System-Level Approach for Poisoning Prevention. SLAPP leverages commodity security features of embedded devices - in particular ARM TrustZoneM security extensions - to verifiably bind raw sensed data to their correct usage as part of FL/LDP edge device routines. As a consequence, it offers robust security guarantees against poisoning. Our evaluation, based on real-world prototypes featuring multiple cryptographic primitives and data collection schemes, showcases SLAPP's security and low overhead.
- Abstract(参考訳): IoT駆動の分散データ分析の台頭と、プライバシー上の懸念の高まりにより、効果的なプライバシ保護とフェデレーション付きデータ収集/モデルトレーニングメカニズムの需要が高まっている。
これに対し、フェデレートラーニング(FL)やローカルディファレンシャルプライバシ(LDP)といったアプローチが提案され、ここ数年で多くの注目を集めている。
しかし、敵の敵が敵のエッジデバイスに偽造された(毒を盛った)データをバックエンドに供給し、FL/LDP結果の整合性を損なうような、毒攻撃に弱いという共通の制限を共有している。
本研究では,IoT/組み込みデバイスのソフトウェアに対する,新しいセキュリティ概念PoSX(Proofs of Stateful Execution)に基づくシステムレベルのアプローチを提案する。
PoSX の概念を実現するため,私たちは SLAPP: System-Level Approach for Poisoning Prevention を設計した。
SLAPPは組み込みデバイス(特にARM TrustZoneMセキュリティ拡張)のコモディティセキュリティ機能を活用して、FL/LDPエッジデバイスルーチンの一部として、生の知覚データを正しい使用法に確実に結合する。
その結果、毒殺に対する堅牢なセキュリティ保証が提供される。
複数の暗号プリミティブとデータ収集スキームを備えた実世界のプロトタイプに基づいて評価を行ったところ,SLAPPのセキュリティとオーバーヘッドの低さが示された。
関連論文リスト
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP)はPush-ButtonConfiguration (PBC)標準の改良である。
TEP は Tamper-Evident Announcement (TEA) に依存しており、相手が送信されたメッセージを検出せずに改ざんしたり、メッセージが送信された事実を隠蔽したりすることを保証している。
本稿では,その動作を理解するために必要なすべての情報を含む,TEPプロトコルの概要について概説する。
論文 参考訳(メタデータ) (2023-11-24T18:54:00Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
我々は、リソース制限されたTrusted OSのセキュリティを検証するための、最初の状態認識ファジィフレームワークであるSyzTrustを紹介する。
SyzTrustはハードウェア支援フレームワークを採用し、IoTデバイス上でTrusted OSを直接ファジングできるようにする。
我々は、Samsung、Tsinglink Cloud、Ali Cloudの3つの主要なベンダーからSyzTrust on Trusted OSを評価した。
論文 参考訳(メタデータ) (2023-09-26T08:11:38Z) - Fed-LSAE: Thwarting Poisoning Attacks against Federated Cyber Threat Detection System via Autoencoder-based Latent Space Inspection [0.0]
サイバーセキュリティでは、センシティブなデータと文脈情報と高品質なラベル付けが重要な役割を果たす。
本稿では,潜在空間表現を利用したフェデレーション学習のための新しい頑健なアグリゲーション手法であるFed-LSAEについて検討する。
CIC-ToN-IoTおよびN-Ba IoTデータセットの実験結果から,最先端の毒殺攻撃に対する防御機構の実現可能性が確認された。
論文 参考訳(メタデータ) (2023-09-20T04:14:48Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
我々は、N-party Federated Learningのための最初のブロックチェーンベースのフレームワークBEASを紹介する。
グラデーションプルーニングを使用したトレーニングデータの厳格なプライバシー保証を提供する。
異常検出プロトコルは、データ汚染攻撃のリスクを最小限に抑えるために使用される。
また、異種学習環境における早期収束を防止するための新しいプロトコルも定義する。
論文 参考訳(メタデータ) (2022-02-06T17:11:14Z) - Towards a Privacy-preserving Deep Learning-based Network Intrusion
Detection in Data Distribution Services [0.0]
Data Distribution Service(DDS)は、ICS/IoTインフラストラクチャとロボティクスにおけるコミュニケーションに向けた革新的なアプローチである。
従来の侵入検知システム(IDS)はパブリッシュ/サブスクライブ方式では異常を検知しない。
本稿では,Deep Learningのシミュレーションと応用に関する実験的検討を行った。
論文 参考訳(メタデータ) (2021-06-12T12:53:38Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。