論文の概要: Efficient Full-Stack Private Federated Deep Learning with Post-Quantum Security
- arxiv url: http://arxiv.org/abs/2505.05751v1
- Date: Fri, 09 May 2025 03:20:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.137099
- Title: Efficient Full-Stack Private Federated Deep Learning with Post-Quantum Security
- Title(参考訳): ポスト量子セキュリティによる完全スタックプライベートフェデレーションディープラーニングの効率化
- Authors: Yiwei Zhang, Rouzbeh Behnia, Attila A. Yavuz, Reza Ebrahimi, Elisa Bertino,
- Abstract要約: フェデレートラーニング(FL)は、データをローカルに保つことによって、ユーザのデータプライバシを保護しながら、協調的なモデルトレーニングを可能にする。
このようなアドバンテージにもかかわらず、FLはトレーニングやデプロイメント中のユーザの更新やモデルパラメータに対するプライバシ攻撃に弱いままである。
私たちは、ポストクォータムセキュアアグリゲーションを提供する新しいフレームワークであるBeskarを紹介します。
- 参考スコア(独自算出の注目度): 17.45950557331482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables collaborative model training while preserving user data privacy by keeping data local. Despite these advantages, FL remains vulnerable to privacy attacks on user updates and model parameters during training and deployment. Secure aggregation protocols have been proposed to protect user updates by encrypting them, but these methods often incur high computational costs and are not resistant to quantum computers. Additionally, differential privacy (DP) has been used to mitigate privacy leakages, but existing methods focus on secure aggregation or DP, neglecting their potential synergies. To address these gaps, we introduce Beskar, a novel framework that provides post-quantum secure aggregation, optimizes computational overhead for FL settings, and defines a comprehensive threat model that accounts for a wide spectrum of adversaries. We also integrate DP into different stages of FL training to enhance privacy protection in diverse scenarios. Our framework provides a detailed analysis of the trade-offs between security, performance, and model accuracy, representing the first thorough examination of secure aggregation protocols combined with various DP approaches for post-quantum secure FL. Beskar aims to address the pressing privacy and security issues FL while ensuring quantum-safety and robust performance.
- Abstract(参考訳): フェデレートラーニング(FL)は、データをローカルに保つことによって、ユーザのデータプライバシを保護しながら、協調的なモデルトレーニングを可能にする。
このようなアドバンテージにもかかわらず、FLはトレーニングやデプロイメント中のユーザの更新やモデルパラメータに対するプライバシ攻撃に弱いままである。
セキュアアグリゲーションプロトコルは、暗号化することでユーザー更新を保護するために提案されているが、これらの手法は高い計算コストを発生させることが多く、量子コンピュータに耐性がない。
さらに、差分プライバシー(DP)は、プライバシー漏洩を緩和するために使われてきたが、既存の方法は、その潜在的なシナジーを無視して、安全なアグリゲーション(DP)に焦点を当てている。
これらのギャップに対処するため、我々は、量子後安全なアグリゲーションを提供する新しいフレームワークであるBeskarを導入し、FL設定の計算オーバーヘッドを最適化し、幅広い敵を考慮に入れた包括的脅威モデルを定義した。
また,DPをFLトレーニングのさまざまな段階に統合し,多様なシナリオにおけるプライバシー保護を強化する。
本フレームワークは,セキュリティ,性能,モデル精度のトレードオフを詳細に分析し,セキュアアグリゲーションプロトコルとポスト量子セキュアFLに対する様々なDPアプローチを組み合わせた最初の徹底的な検証結果を示す。
Beskarは、量子安全性とロバストなパフォーマンスを確保しながら、プライバシーとセキュリティのプレッシャーに対処することを目指している。
関連論文リスト
- FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning [17.853502904387376]
Federated Learning (FL)は、分散クライアント間で、ローカルデータを共有せずにモデルの協調的なトレーニングを可能にし、分散システムにおけるプライバシの問題に対処する。
適応雑音注入による制御摂動を組み込んだ新しいアルゴリズムであるフェデレートエラー最小化(FedEM)を提案する。
ベンチマークデータセットの実験結果から、FedEMはプライバシのリスクを著しく低減し、モデルの正確性を保ち、プライバシ保護とユーティリティ保護の堅牢なバランスを達成している。
論文 参考訳(メタデータ) (2025-03-08T02:48:00Z) - A New Federated Learning Framework Against Gradient Inversion Attacks [17.3044168511991]
Federated Learning (FL)は、クライアントが生データを共有せずに機械学習モデルを集合的にトレーニングできるようにすることで、データのプライバシを保護することを目的としている。
近年の研究では、FL中に交換された情報がグラディエント・インバージョン・アタック(GIA)の対象であることが示されている。
論文 参考訳(メタデータ) (2024-12-10T04:53:42Z) - Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework [19.381425127772054]
Federated Learning(FL)は、エッジデバイスがローカルなトレーニングデータを維持することができる分散機械学習フレームワークである。
本稿では,分散化された動的電力制御により差分プライバシ(DP)を改善するOTA-FLの無線物理層(PHY)設計を提案する。
この適応は、異なる学習アルゴリズム間で設計の柔軟性と有効性を示しながら、プライバシに強く重点を置いています。
論文 参考訳(メタデータ) (2024-12-05T18:27:09Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Camel: Communication-Efficient and Maliciously Secure Federated Learning in the Shuffle Model of Differential Privacy [9.100955087185811]
フェデレートラーニング(FL)は、複数のクライアントが集約のための勾配更新のみを共有することで、モデルを共同でトレーニングすることを可能にする、急速に魅力的なパラダイムになっています。
プライバシーに敏感なグラデーションアップデートを保護するため、ローカルな差分プライバシーメカニズムの研究が続けられている。
我々は,DP のシャッフルモデルにおいて,コミュニケーション効率が高く,かつ悪意のある FL フレームワークである Camel を提示する。
論文 参考訳(メタデータ) (2024-10-04T13:13:44Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
フェデレートラーニング(FL)により、分散エージェントは、生データを互いに共有することなく、集中型モデルを共同で学習することができる。
スパーシフィケーションを増幅した新しいFLフレームワークを提案する。
提案手法では,ランダムなスペーシフィケーションと各エージェントの勾配摂動を統合し,プライバシー保証を増幅する。
論文 参考訳(メタデータ) (2020-08-01T20:22:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。