論文の概要: SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography
- arxiv url: http://arxiv.org/abs/2404.06869v1
- Date: Wed, 10 Apr 2024 09:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:50:32.831355
- Title: SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography
- Title(参考訳): SleepPPG-Net2: Photoplethysmographyによる睡眠ステージングのためのディープラーニングの一般化
- Authors: Shirel Attia, Revital Shani Hershkovich, Alissa Tabakhov, Angeleene Ang, Sharon Haimov, Riva Tauman, Joachim A. Behar,
- Abstract要約: 睡眠ステージングは睡眠障害の診断と睡眠の健康管理の基本的な要素である。
最近のスリープステージングのためのデータ駆動アルゴリズムは、ローカルテストセットでは高いパフォーマンスを示しているが、外部データセットでは低いパフォーマンスを示している。
Sleep-Net2は生のPSG時系列からスリープをステージングするための新しい標準を設定している。
- 参考スコア(独自算出の注目度): 0.7927502566022343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Sleep staging is a fundamental component in the diagnosis of sleep disorders and the management of sleep health. Traditionally, this analysis is conducted in clinical settings and involves a time-consuming scoring procedure. Recent data-driven algorithms for sleep staging, using the photoplethysmogram (PPG) time series, have shown high performance on local test sets but lower performance on external datasets due to data drift. Methods: This study aimed to develop a generalizable deep learning model for the task of four class (wake, light, deep, and rapid eye movement (REM)) sleep staging from raw PPG physiological time-series. Six sleep datasets, totaling 2,574 patients recordings, were used. In order to create a more generalizable representation, we developed and evaluated a deep learning model called SleepPPG-Net2, which employs a multi-source domain training approach.SleepPPG-Net2 was benchmarked against two state-of-the-art models. Results: SleepPPG-Net2 showed consistently higher performance over benchmark approaches, with generalization performance (Cohen's kappa) improving by up to 19%. Performance disparities were observed in relation to age, sex, and sleep apnea severity. Conclusion: SleepPPG-Net2 sets a new standard for staging sleep from raw PPG time-series.
- Abstract(参考訳): 背景:睡眠ステージングは睡眠障害の診断と睡眠の健康管理の基本的な要素である。
伝統的に、この分析は臨床環境で行われ、時間を要する採点手順が伴う。
近年の睡眠ステージングのためのデータ駆動アルゴリズムは, 局所的なテストセットでは高い性能を示したが, データのドリフトによる外部データセットでは低い性能を示した。
方法:本研究は,生PSGの生理的時系列から,4種類の睡眠(覚醒,軽度,深度,急速眼球運動(REM))の課題に対する一般化可能な深層学習モデルを開発することを目的とした。
6つの睡眠データセット(計2,574人)が使用された。
スリープPPG-Net2は、より一般化可能な表現を作成するために、マルチソースのドメイントレーニング手法を用いて、SleepPPG-Net2と呼ばれる深層学習モデルを開発し、評価した。
結果:SleepPPG-Net2はベンチマーク手法よりも一貫して高い性能を示し,一般化性能(Cohen's kappa)は最大19%向上した。
年齢,性別,睡眠時無呼吸の重症度との関連で,パフォーマンスの相違が認められた。
結論:SleepPPG-Net2は生のPSG時系列から睡眠をステージングするための新しい標準を設定している。
関連論文リスト
- MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
本研究では,睡眠時ステージングと障害分類の自動モデルを構築し,診断精度と効率を向上させる。
マルチモード睡眠状態分類モデルMSSC-BiMamba を設計した。
このモデルは、マルチモーダルPSGデータを用いたスリープステージングにBiMambaを初めて適用し、計算とメモリ効率を大幅に向上させた。
論文 参考訳(メタデータ) (2024-05-30T15:16:53Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging [16.96499618061823]
L-SeqSleepNetは、睡眠ステージングのためのサイクル全体の睡眠情報を考慮した、新しいディープラーニングモデルである。
L-SeqSleepNetは、N2睡眠の優位性を緩和し、他の睡眠段階におけるエラーを減少させることができる。
論文 参考訳(メタデータ) (2023-01-09T15:44:43Z) - ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph
Learning with Attentive Temporal Aggregation [4.014524824655106]
本研究では,協調時間グラフ学習のための適応型製品グラフ学習型グラフ畳み込みネットワークProductGraphSleepNetを提案する。
提案したネットワークにより、臨床医は学習した睡眠段階の接続グラフを理解し、解釈することができる。
論文 参考訳(メタデータ) (2022-12-09T14:34:58Z) - SleepPPG-Net: a deep learning algorithm for robust sleep staging from
continuous photoplethysmography [0.0]
生PSG時系列からの4クラス睡眠ステージングのためのDLモデルであるSleep-Netを開発した。
我々は、最高の報告されたSOTAアルゴリズムに基づいて、Sleep-Netの性能をモデルと比較した。
論文 参考訳(メタデータ) (2022-02-11T16:17:42Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - RobustSleepNet: Transfer learning for automated sleep staging at scale [0.0]
睡眠障害の診断は、PSG(polysomnography)レコードの分析に依存する。
実際には、睡眠ステージ分類は、ポリソムノグラフィー信号の30秒エポックの視覚検査に依存します。
我々は、任意のPSGモンタージュを扱える自動睡眠ステージ分類のためのディープラーニングモデルであるRobustSleepNetを紹介する。
論文 参考訳(メタデータ) (2021-01-07T09:39:08Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
既存のエンド・ツー・エンドのネットワークが難易度が低い理由を考察し,アーキテクチャ・サーチ(NAS)を用いたリモートHR計測のための強力なベースラインを確立する。
総合的な実験は、時間内テストとクロスデータセットテストの両方で3つのベンチマークデータセットで実施される。
論文 参考訳(メタデータ) (2020-04-26T05:43:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。