A Structure-Preserving Kernel Method for Learning Hamiltonian Systems
- URL: http://arxiv.org/abs/2403.10070v1
- Date: Fri, 15 Mar 2024 07:20:21 GMT
- Title: A Structure-Preserving Kernel Method for Learning Hamiltonian Systems
- Authors: Jianyu Hu, Juan-Pablo Ortega, Daiying Yin,
- Abstract summary: A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
- Score: 3.594638299627404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions out of datasets made of noisy observations of Hamiltonian vector fields. The method proposes a closed-form solution that yields excellent numerical performances that surpass other techniques proposed in the literature in this setup. From the methodological point of view, the paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required and, in particular, a differential reproducing property and a Representer Theorem are proved in this context. The relation between the structure-preserving kernel estimator and the Gaussian posterior mean estimator is analyzed. A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters. The good performance of the proposed estimator is illustrated with various numerical experiments.
Related papers
- Distributed Learning with Discretely Observed Functional Data [1.4583059436979549]
This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem.
The hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels.
We derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm.
arXiv Detail & Related papers (2024-10-03T10:49:34Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Nonparametric learning of kernels in nonlocal operators [6.314604944530131]
We provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators.
We propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability.
arXiv Detail & Related papers (2022-05-23T02:47:55Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
We propose a framework for matrix variate regression models based on a rank constraint, vector regularization (e.g., sparsity), and a general loss function.
We show that the algorithm is guaranteed to converge, all accumulation points of the algorithm have estimation errors in the order of $O(sqrtn)$ally and substantially attaining the minimax rate.
arXiv Detail & Related papers (2022-05-14T18:03:48Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Symplectic Gaussian Process Regression of Hamiltonian Flow Maps [0.8029049649310213]
We present an approach to construct appropriate and efficient emulators for Hamiltonian flow maps.
Intended future applications are long-term tracing of fast charged particles in accelerators and magnetic plasma confinement.
arXiv Detail & Related papers (2020-09-11T17:56:35Z) - Asymptotic Errors for Teacher-Student Convex Generalized Linear Models
(or : How to Prove Kabashima's Replica Formula) [23.15629681360836]
We prove an analytical formula for the reconstruction performance of convex generalized linear models.
We show that an analytical continuation may be carried out to extend the result to convex (non-strongly) problems.
We illustrate our claim with numerical examples on mainstream learning methods.
arXiv Detail & Related papers (2020-06-11T16:26:35Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.