Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic
Equations through a Physics-Informed Convolutional Autoencoder
- URL: http://arxiv.org/abs/2108.12344v1
- Date: Fri, 27 Aug 2021 15:20:01 GMT
- Title: Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic
Equations through a Physics-Informed Convolutional Autoencoder
- Authors: Rachel Cooper, Andrey A. Popov, Adrian Sandu
- Abstract summary: Reduced order modeling (ROM) approximates complex physics-based models of real-world processes by inexpensive surrogates.
In this paper we explore the construction of ROM using autoencoders (AE) that perform nonlinear projections of the system dynamics onto a low dimensional manifold.
Our investigation using the quasi-geostrophic equations reveals that while the PI cost function helps with spatial reconstruction, spatial features are less powerful than spectral features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reduced order modeling (ROM) is a field of techniques that approximates
complex physics-based models of real-world processes by inexpensive surrogates
that capture important dynamical characteristics with a smaller number of
degrees of freedom. Traditional ROM techniques such as proper orthogonal
decomposition (POD) focus on linear projections of the dynamics onto a set of
spectral features. In this paper we explore the construction of ROM using
autoencoders (AE) that perform nonlinear projections of the system dynamics
onto a low dimensional manifold learned from data. The approach uses
convolutional neural networks (CNN) to learn spatial features as opposed to
spectral, and utilize a physics informed (PI) cost function in order to capture
temporal features as well. Our investigation using the quasi-geostrophic
equations reveals that while the PI cost function helps with spatial
reconstruction, spatial features are less powerful than spectral features, and
that construction of ROMs through machine learning-based methods requires
significant investigation into novel non-standard methodologies.
Related papers
- Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
spatio-temporal processes [2.3694122563610924]
Latent Dynamics Network (LDNet) is able to discover low-dimensional intrinsic dynamics of possibly non-Markovian dynamical systems.
LDNets are lightweight and easy-to-train, with excellent accuracy and generalization properties, even in time-extrapolation regimes.
arXiv Detail & Related papers (2023-04-28T21:11:13Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Deep-HyROMnet: A deep learning-based operator approximation for
hyper-reduction of nonlinear parametrized PDEs [0.0]
We propose a strategy for learning nonlinear ROM operators using deep neural networks (DNNs)
The resulting hyper-reduced order model enhanced by DNNs is referred to as Deep-HyROMnet.
Numerical results show that Deep-HyROMnets are orders of magnitude faster than POD-GalerkinDEIMs, keeping the same level of accuracy.
arXiv Detail & Related papers (2022-02-05T23:45:25Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
We present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs.
We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator.
arXiv Detail & Related papers (2021-05-08T03:50:45Z) - A Tailored Convolutional Neural Network for Nonlinear Manifold Learning
of Computational Physics Data using Unstructured Spatial Discretizations [0.0]
We propose a nonlinear manifold learning technique based on deep convolutional autoencoders.
The technique is appropriate for model order reduction of physical systems in complex geometries.
arXiv Detail & Related papers (2020-06-11T02:19:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.