Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
- URL: http://arxiv.org/abs/2407.21794v1
- Date: Wed, 31 Jul 2024 17:59:58 GMT
- Title: Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
- Authors: Atsuyuki Miyai, Jingkang Yang, Jingyang Zhang, Yifei Ming, Yueqian Lin, Qing Yu, Go Irie, Shafiq Joty, Yixuan Li, Hai Li, Ziwei Liu, Toshihiko Yamasaki, Kiyoharu Aizawa,
- Abstract summary: We first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era.
Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD.
- Score: 107.08019135783444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.
Related papers
- The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
Out-of-distribution (OOD) detection is essential for model trustworthiness.
We show that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability.
arXiv Detail & Related papers (2024-10-12T07:02:04Z) - Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey [18.570066068280212]
Large Language Models (LLMs) have demonstrated their effectiveness not only in natural language processing but also in broader applications.
This survey focuses on the problem of anomaly and OOD detection under the context of LLMs.
We propose a new taxonomy to categorize existing approaches into two classes based on the role played by LLMs.
arXiv Detail & Related papers (2024-09-03T15:22:41Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
Unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection have received significant attention in recent years.
We present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method)
Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios.
We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods.
arXiv Detail & Related papers (2024-06-21T04:07:43Z) - Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection [3.7384109981836158]
We study the problem of out-of-distribution (OOD) detection in reinforcement learning (RL)
We propose a clarification of terminology for OOD detection in RL, which aligns it with the literature from other machine learning domains.
We present new benchmark scenarios for OOD detection, which introduce anomalies with temporal autocorrelation into different components of the agent-environment loop.
We find that DEXTER can reliably identify anomalies across benchmark scenarios, exhibiting superior performance compared to both state-of-the-art OOD detectors and high-dimensional changepoint detectors adopted from statistics.
arXiv Detail & Related papers (2024-04-10T15:39:49Z) - Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey [7.891552999555933]
Deep neural networks (DNNs) deployed in real-world applications can encounter out-of-distribution (OOD) data and adversarial examples.
Traditionally, research has addressed OOD detection and adversarial robustness as separate challenges.
This survey focuses on the intersection of these two areas, examining how the research community has investigated them together.
arXiv Detail & Related papers (2024-04-08T06:27:38Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - Classical Out-of-Distribution Detection Methods Benchmark in Text
Classification Tasks [0.0]
State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples.
In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP.
arXiv Detail & Related papers (2023-07-13T18:06:12Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems.
Several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD) are closely related to OOD detection.
We first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems.
arXiv Detail & Related papers (2021-10-21T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.