論文の概要: Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images
- arxiv url: http://arxiv.org/abs/2404.07112v3
- Date: Fri, 21 Jun 2024 17:14:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 19:26:42.892382
- Title: Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images
- Title(参考訳): ハイパースペクトル画像のサブスペースクラスタリングのための展開ADMM
- Authors: Xianlu Li, Nicolas Nadisic, Shaoguang Huang, Aleksandra Pižurica,
- Abstract要約: 本稿では,スパースサブスペースクラスタリングのためのマルチプライヤの交互方向法(ADMM)に基づく反復解法を展開させることにより,ハイパースペクトル画像(HSI)のための革新的なクラスタリングアーキテクチャを提案する。
提案手法は, 構造保存モジュールの一部として, K近傍近傍のアルゴリズムを用いて, HSIデータの構造特性をよく把握する。
- 参考スコア(独自算出の注目度): 43.152314090830174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep subspace clustering methods are now prominent in clustering, typically using fully connected networks and a self-representation loss function. However, these methods often struggle with overfitting and lack interpretability. In this paper, we explore an alternative clustering approach based on deep unfolding. By unfolding iterative optimization methods into neural networks, this approach offers enhanced interpretability and reliability compared to data-driven deep learning methods, and greater adaptability and generalization than model-based approaches. Hence, unfolding has become widely used in inverse imaging problems, such as image restoration, reconstruction, and super-resolution, but has not been sufficiently explored yet in the context of clustering. In this work, we introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering. To our knowledge, this is the first attempt to apply unfolding ADMM for computing the self-representation matrix in subspace clustering. Moreover, our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module. Experimental evaluation of three established HSI datasets shows clearly the potential of the unfolding approach in HSI clustering and even demonstrates superior performance compared to state-of-the-art techniques.
- Abstract(参考訳): ディープサブスペースクラスタリング法はクラスタリングにおいて注目され、一般的には完全に接続されたネットワークと自己表現損失関数を使用する。
しかし、これらの手法は過度に適合し、解釈性に欠けることが多い。
本稿では,深部展開に基づくクラスタリング手法を提案する。
ニューラルネットワークに反復最適化手法を展開することにより、データ駆動型ディープラーニング手法と比較して解釈可能性と信頼性が向上し、モデルベースアプローチよりも適応性と一般化が向上する。
したがって、展開は画像復元、再構成、超解像などの逆画像問題で広く用いられるようになったが、クラスタリングの文脈では十分に研究されていない。
本研究では,部分空間クラスタリングのためのマルチプライヤの交互方向法(ADMM)に基づく反復解法を展開させることにより,ハイパースペクトル画像(HSI)のための革新的なクラスタリングアーキテクチャを提案する。
我々の知る限り、これはサブスペースクラスタリングにおける自己表現行列の計算に展開ADMMを適用する最初の試みである。
さらに,本手法では,構造保存モジュールの一部として,K近傍近傍のアルゴリズムを用いて,HSIデータの構造特性をよく把握する。
3つの確立されたHSIデータセットの実験的評価は、HSIクラスタリングにおける展開アプローチの可能性を明確に示し、最先端技術よりも優れた性能を示している。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
本研究は,深層埋め込みから画像クラスタリングを行うための新しいフレームワークを提案する。
提案手法では,クラスタセンターの表現をエンドツーエンドで学習し,予測する。
我々のフレームワークは広く受け入れられているクラスタリング手法と同等に動作し、CIFAR-10データセット上で最先端のコントラスト学習手法より優れています。
論文 参考訳(メタデータ) (2021-09-26T22:18:15Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Scattering Transform Based Image Clustering using Projection onto
Orthogonal Complement [2.0305676256390934]
本稿では,画像クラスタリングのための最先端,安定,高速なアルゴリズムであるProjected-Scattering Spectral Clustering (PSSC)を紹介する。
PSSCは、小さな画像の散乱変換の幾何学的構造を利用する新しい方法を含む。
実験の結果,PSSCは全ての浅層クラスタリングアルゴリズムの中で最良の結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-11-23T17:59:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。