論文の概要: Continuous Language Model Interpolation for Dynamic and Controllable Text Generation
- arxiv url: http://arxiv.org/abs/2404.07117v1
- Date: Wed, 10 Apr 2024 15:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:11:27.384928
- Title: Continuous Language Model Interpolation for Dynamic and Controllable Text Generation
- Title(参考訳): 動的・制御可能なテキスト生成のための連続言語モデル補間
- Authors: Sara Kangaslahti, David Alvarez-Melis,
- Abstract要約: 私たちは、モデルが多様な、そしてしばしば変化する、ユーザの好みに動的に適応しなければならない、困難なケースに注目します。
線形重みに基づく適応手法を活用し、連続的なマルチドメイン補間子としてキャストする。
重みの変化がモデル出力の予測可能かつ一貫した変化をもたらすことを示す。
- 参考スコア(独自算出の注目度): 7.535219325248997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) have gained popularity for a variety of use cases, making them adaptable and controllable has become increasingly important, especially for user-facing applications. While the existing literature on LLM adaptation primarily focuses on finding a model (or models) that optimizes a single predefined objective, here we focus on the challenging case where the model must dynamically adapt to diverse -- and often changing -- user preferences. For this, we leverage adaptation methods based on linear weight interpolation, casting them as continuous multi-domain interpolators that produce models with specific prescribed generation characteristics on-the-fly. Specifically, we use low-rank updates to fine-tune a base model to various different domains, yielding a set of anchor models with distinct generation profiles. Then, we use the weight updates of these anchor models to parametrize the entire (infinite) class of models contained within their convex hull. We empirically show that varying the interpolation weights yields predictable and consistent change in the model outputs with respect to all of the controlled attributes. We find that there is little entanglement between most attributes and identify and discuss the pairs of attributes for which this is not the case. Our results suggest that linearly interpolating between the weights of fine-tuned models facilitates predictable, fine-grained control of model outputs with respect to multiple stylistic characteristics simultaneously.
- Abstract(参考訳): 大規模言語モデル(LLM)が様々なユースケースで人気を集めているため、特にユーザ向けアプリケーションにおいて、適応性と制御性はますます重要になっている。
LLM適応に関する既存の文献は、主に、単一の事前定義された目的を最適化するモデル(またはモデル)を見つけることに焦点を当てていますが、ここでは、モデルを多様で、しばしば変化する -- ユーザの好みに動的に適応しなければならない、という挑戦的なケースに焦点を当てます。
そこで我々は,線形重み補間に基づく適応手法を活用し,それを連続多領域補間器としてキャストし,特定の所定の生成特性を持つモデルを生成する。
具体的には、低ランク更新を使用してベースモデルをさまざまなドメインに微調整し、異なる生成プロファイルを持つアンカーモデルのセットを生成する。
次に、これらのアンカーモデルの重み更新を用いて、凸内包に含まれるモデルの全体(無限)クラスをパラメトリズする。
補間重みの変化は、制御された全ての属性に対して、モデル出力の予測可能かつ一貫した変化をもたらすことを実証的に示す。
ほとんどの属性の間にはほとんど絡み合いがなく、そうでない属性のペアを識別し、議論しているのがわかります。
この結果から, モデル出力の重み付けを線形に補間することで, モデル出力の予測可能かつきめ細かな制御を同時に行うことが示唆された。
関連論文リスト
- FuXi-$α$: Scaling Recommendation Model with Feature Interaction Enhanced Transformer [81.12174905444229]
近年の進歩は、大規模レコメンデーションモデルに逐次レコメンデーションモデルを拡張することが効果的な戦略であることを示している。
これらの問題に対処するために、FuXi-$alpha$と呼ばれる新しいモデルを提案する。
我々のモデルは既存のモデルよりも優れており、モデルのサイズが大きくなるにつれてその性能は継続的に向上する。
論文 参考訳(メタデータ) (2025-02-05T09:46:54Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging [11.186194228460273]
本稿では,各ベースモデルのタスク上でのマージモデルの性能を目的として扱う,嗜好意識のモデルマージ問題を提案する。
提案したモデルマージにより,多様なトレードオフモデルが生成され,最先端のマージベースラインと比較して高いテスト精度が得られることを示す。
論文 参考訳(メタデータ) (2024-08-22T03:41:14Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Fast Adaptation with Bradley-Terry Preference Models in Text-To-Image
Classification and Generation [0.0]
我々はBradley-Terry選好モデルを利用して、元のモデルを効率的に微調整する高速適応法を開発した。
このフレームワークの能力の広範な証拠は、マルチモーダルテキストや画像理解に関連するさまざまな領域の実験を通じて提供される。
論文 参考訳(メタデータ) (2023-07-15T07:53:12Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - CAMERO: Consistency Regularized Ensemble of Perturbed Language Models
with Weight Sharing [83.63107444454938]
本稿では,CAMEROと呼ばれる摂動モデルに基づく一貫性規則化アンサンブル学習手法を提案する。
具体的には、すべてのモデルで底層重みを共有し、異なるモデルの隠れ表現に異なる摂動を適用し、モデルの多様性を効果的に促進することができる。
大規模言語モデルを用いた実験により,CAMEROはアンサンブルモデルの一般化性能を大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-04-13T19:54:51Z) - Model Compression for Domain Adaptation through Causal Effect Estimation [20.842938440720303]
ATE誘導モデル圧縮スキーム(AMoC)は、除去されたモデルコンポーネントによって異なる多くのモデル候補を生成する。
次に、ATEを利用した段階的回帰モデルを用いて、最適候補を選択し、対象領域における期待性能を予測する。
AMoCは2つのテキスト分類タスクで60のドメインペアのうち46の強いベースラインより優れており、F1の平均的な改善は最強のベースラインより3%以上多い。
論文 参考訳(メタデータ) (2021-01-18T14:18:02Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
データモデリングのために選択されたモデルが(線形/非線形、静的/動的)異なるモデルと独立(最小相関)モデルである場合、予測の精度が向上することが知られている。
アンサンブルモデルを重み付けするために文献で提案された様々なアプローチは、静的な重みセットを使用する。
この問題に対処するため、Reinforcement Learning (RL)アプローチでは、各モデルの重み付けを異なるタイミングで動的に割り当て、更新する。
論文 参考訳(メタデータ) (2020-08-20T10:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。