Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification
- URL: http://arxiv.org/abs/2410.17396v1
- Date: Tue, 22 Oct 2024 20:02:38 GMT
- Title: Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification
- Authors: Arrun Sivasubramanian, Divya Sasidharan, Sowmya V, Vinayakumar Ravi,
- Abstract summary: We propose a lightweight artificial intelligence architecture to classify the largest benchmark ultrasound dataset.
The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k.
Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576.
- Score: 3.998431476275487
- License:
- Abstract: Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.
Related papers
- Measuring proximity to standard planes during fetal brain ultrasound scanning [8.328549443700858]
This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use.
We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices.
Our model enables reliable segmentation across a diverse set of fetal brain images.
arXiv Detail & Related papers (2024-04-10T16:04:21Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
We propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees for predicting fetal health.
Our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy.
arXiv Detail & Related papers (2023-05-26T16:40:44Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep
Learning Model For The Accurate Caliper Placement To Obtain Sonographic
Measurements Of The Fetal Brain [0.0]
We propose a deep learning (DL) approach to compute 3 key fetal brain biometry from the 2D USG images of the transcerebellar plane (TC)
We leveraged clinically relevant biometric constraints (relationship between caliper points) and domain-relevant data augmentation to improve the accuracy of a U-Net DL model.
For all cases, the mean errors in the placement of the individual caliper points and the computed biometry were comparable to error rates among clinicians.
arXiv Detail & Related papers (2022-03-28T04:00:22Z) - Towards A Device-Independent Deep Learning Approach for the Automated
Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and
Multi-Device Validation [0.0]
We propose a DL based segmentation framework for the automated segmentation of 10 key fetal brain structures from 2 axial planes from fetal brain USG images (2D)
The proposed DL system offered a promising and generalizable performance (multi-centers, multi-device) and also presents evidence in support of device-induced variation in image quality.
arXiv Detail & Related papers (2022-02-28T05:42:03Z) - Classification of fetal compromise during labour: signal processing and
feature engineering of the cardiotocograph [0.0]
This study develops novel CTG features based on clinical expertise and system control theory.
Features are evaluated in a machine learning model to assess their efficacy in identifying fetal compromise.
ARMA features ranked amongst the top features for detecting fetal compromise.
arXiv Detail & Related papers (2021-10-31T15:02:14Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.