論文の概要: A Foundation Model for Zero-shot Logical Query Reasoning
- arxiv url: http://arxiv.org/abs/2404.07198v2
- Date: Tue, 01 Oct 2024 05:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:33:31.118888
- Title: A Foundation Model for Zero-shot Logical Query Reasoning
- Title(参考訳): ゼロショット論理クエリ推論のための基礎モデル
- Authors: Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu,
- Abstract要約: 知識グラフ(KG)における複雑な論理的問合せ応答(CLQA)は、単純なKG完備化を超えている。
提案するUltraQueryは,任意のKG上で論理的クエリをゼロショットで応答可能な,帰納的推論のための最初の基礎モデルである。
- 参考スコア(独自算出の注目度): 20.652279854090846
- License:
- Abstract: Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion and aims at answering compositional queries comprised of multiple projections and logical operations. Existing CLQA methods that learn parameters bound to certain entity or relation vocabularies can only be applied to the graph they are trained on which requires substantial training time before being deployed on a new graph. Here we present UltraQuery, the first foundation model for inductive reasoning that can zero-shot answer logical queries on any KG. The core idea of UltraQuery is to derive both projections and logical operations as vocabulary-independent functions which generalize to new entities and relations in any KG. With the projection operation initialized from a pre-trained inductive KG reasoning model, UltraQuery can solve CLQA on any KG after finetuning on a single dataset. Experimenting on 23 datasets, UltraQuery in the zero-shot inference mode shows competitive or better query answering performance than best available baselines and sets a new state of the art on 15 of them.
- Abstract(参考訳): 知識グラフ (KG) における複雑な論理的クエリ応答 (CLQA) は、単純なKG補完を超越し、複数のプロジェクションと論理的操作からなる構成的クエリに答えることを目的としている。
既存のCLQAメソッドは、特定のエンティティやリレーショナルボキャブラリにバウンドしたパラメータを学習し、トレーニング対象のグラフにのみ適用することができる。
ここでは、任意のKG上で論理的クエリをゼロショットで応答できる、帰納的推論のための最初の基礎モデルであるUltraQueryを紹介する。
UltraQueryの中核となる考え方は、任意のKGにおける新しい実体と関係を一般化する語彙に依存しない関数として、射影と論理演算の両方を導出することである。
事前訓練された帰納的KG推論モデルから初期化されたプロジェクション操作により、UltraQueryは単一のデータセットで微調整した後、任意のKG上のCLQAを解決できる。
23のデータセットでの実験では、ゼロショット推論モードのUltraQueryは、最高のベースラインよりも競合的あるいはより良いクエリ応答性能を示し、その中の15に新たな最先端を設定している。
関連論文リスト
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
我々は,知識グラフ上の任意の共役クエリに対する回答を分類可能なグラフニューラルネットワークモデルであるAnyCQを提案する。
我々は、AnyCQが任意の構造を持つ大規模クエリに一般化できることを示し、既存のアプローチが失敗するサンプルに対する回答を確実に分類し、検索する。
論文 参考訳(メタデータ) (2024-09-21T00:30:44Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Inductive Logical Query Answering in Knowledge Graphs [30.220508024471595]
本研究では、新しいエンティティを含むグラフ上で推論を行う帰納的クエリ応答タスクについて検討する。
グラフニューラルネットワーク(GNN)を用いた帰納的ノードと関係構造表現の2つのメカニズムを考案する。
実験により、帰納的モデルは、学習ノードよりも最大500%大きいグラフに一般化した未確認ノードに対して、推論時間で論理的推論を行うことができることを示した。
論文 参考訳(メタデータ) (2022-10-13T03:53:34Z) - Neural Methods for Logical Reasoning Over Knowledge Graphs [14.941769519278745]
知識グラフ(KGs)上でのマルチホップ論理的クエリの応答に焦点をあてる。
これまでのほとんどの作業では、FOL(First-Order Logical)クエリを完全に受け入れるモデルを作成することができなかった。
本稿では,ニューラルネットワークを用いて一点ベクトル埋め込みを生成し,問合せに答えるモデルを提案する。
論文 参考訳(メタデータ) (2022-09-28T23:10:09Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
本稿では,知識グラフにエッジを欠いた複雑な論理的クエリに応答するクエリ埋め込み手法を提案する。
回答エンティティは、エンティティの埋め込みとクエリの埋め込みの類似性に応じて選択される。
埋め込み空間上の様々な領域から多様な回答を検索するために,複雑なKGクエリ応答方法Q2Pを提案する。
論文 参考訳(メタデータ) (2022-04-27T11:16:08Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
マルチホップ論理推論は知識グラフ上の表現学習の分野で確立された問題である。
我々はマルチホップ推論問題をハイパーリレーショナルなKGに拡張し、この新しいタイプの複雑なクエリに対処する。
論文 参考訳(メタデータ) (2021-06-15T14:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。