A Foundation Model for Zero-shot Logical Query Reasoning
- URL: http://arxiv.org/abs/2404.07198v2
- Date: Tue, 01 Oct 2024 05:52:11 GMT
- Title: A Foundation Model for Zero-shot Logical Query Reasoning
- Authors: Mikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu,
- Abstract summary: Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion.
We present UltraQuery, the first foundation model for inductive reasoning that can zero-shot answer logical queries on any KG.
- Score: 20.652279854090846
- License:
- Abstract: Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion and aims at answering compositional queries comprised of multiple projections and logical operations. Existing CLQA methods that learn parameters bound to certain entity or relation vocabularies can only be applied to the graph they are trained on which requires substantial training time before being deployed on a new graph. Here we present UltraQuery, the first foundation model for inductive reasoning that can zero-shot answer logical queries on any KG. The core idea of UltraQuery is to derive both projections and logical operations as vocabulary-independent functions which generalize to new entities and relations in any KG. With the projection operation initialized from a pre-trained inductive KG reasoning model, UltraQuery can solve CLQA on any KG after finetuning on a single dataset. Experimenting on 23 datasets, UltraQuery in the zero-shot inference mode shows competitive or better query answering performance than best available baselines and sets a new state of the art on 15 of them.
Related papers
- Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
We propose AnyCQ, a graph neural network model that can classify answers to any conjunctive query on any knowledge graph.
We show that AnyCQ can generalize to large queries of arbitrary structure, reliably classifying and retrieving answers to samples where existing approaches fail.
arXiv Detail & Related papers (2024-09-21T00:30:44Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Inductive Logical Query Answering in Knowledge Graphs [30.220508024471595]
We study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities.
We devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs)
Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones.
arXiv Detail & Related papers (2022-10-13T03:53:34Z) - Neural Methods for Logical Reasoning Over Knowledge Graphs [14.941769519278745]
We focus on answering multi-hop logical queries on Knowledge Graphs (KGs)
Most previous works have been unable to create models that accept full First-Order Logical (FOL) queries.
We introduce a set of models that use Neural Networks to create one-point vector embeddings to answer the queries.
arXiv Detail & Related papers (2022-09-28T23:10:09Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
We propose a query embedding method to answer complex logical queries on knowledge graphs with missing edges.
The answer entities are selected according to the similarities between the entity embeddings and the query embedding.
A complex KG query answering method, Q2P, is proposed to retrieve diverse answers from different areas over the embedding space.
arXiv Detail & Related papers (2022-04-27T11:16:08Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs.
We extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries.
arXiv Detail & Related papers (2021-06-15T14:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.