Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras
- URL: http://arxiv.org/abs/2404.07212v1
- Date: Tue, 20 Feb 2024 10:47:06 GMT
- Title: Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras
- Authors: Raphaël Achddou, Yann Gousseau, Saïd Ladjal,
- Abstract summary: We propose a mixed training procedure for image restoration neural networks, relying on both natural and synthetic images, that yields a strong improvement of this acutance metric without impairing fidelity terms.
The feasibility of the approach is demonstrated both on the denoising of RGB images and the full development of RAW images, opening the path to a systematic improvement of the texture acutance of real imaging devices.
- Score: 3.400056739248712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to evaluate the capacity of a camera to render textures properly, the standard practice, used by classical scoring protocols, is to compute the frequential response to a dead leaves image target, from which is built a texture acutance metric. In this work, we propose a mixed training procedure for image restoration neural networks, relying on both natural and synthetic images, that yields a strong improvement of this acutance metric without impairing fidelity terms. The feasibility of the approach is demonstrated both on the denoising of RGB images and the full development of RAW images, opening the path to a systematic improvement of the texture acutance of real imaging devices.
Related papers
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Image Reconstruction using Enhanced Vision Transformer [0.08594140167290097]
We propose a novel image reconstruction framework which can be used for tasks such as image denoising, deblurring or inpainting.
The model proposed in this project is based on Vision Transformer (ViT) that takes 2D images as input and outputs embeddings.
We incorporate four additional optimization techniques in the framework to improve the model reconstruction capability.
arXiv Detail & Related papers (2023-07-11T02:14:18Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
We present a novel GAN-based image compression approach with improved rate-distortion optimization process.
To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure.
The proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid (i.e., VVC)
arXiv Detail & Related papers (2023-06-18T03:21:11Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Reliability-based Mesh-to-Grid Image Reconstruction [0.0]
This paper presents a novel method for the reconstruction of images from samples located at non-integer positions, called mesh.
The proposed method relies on a set of initial estimates that are later refined by a new reliability-based content-adaptive framework.
arXiv Detail & Related papers (2022-05-20T12:32:52Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
We propose a lightweight two-stage image enhancement algorithm sequentially balancing illumination and noise removal.
We also propose a Fourier spectrum-based adversarial framework (AFNet) for consistent image enhancement under varying illumination conditions.
Based on quantitative and qualitative evaluations, we also examine the practicality and effects of image enhancement techniques on the performance of common perception tasks.
arXiv Detail & Related papers (2022-04-04T18:48:51Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z) - Burst Denoising of Dark Images [19.85860245798819]
We propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images.
The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner.
Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T17:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.