Reliability-based Mesh-to-Grid Image Reconstruction
- URL: http://arxiv.org/abs/2205.10138v1
- Date: Fri, 20 May 2022 12:32:52 GMT
- Title: Reliability-based Mesh-to-Grid Image Reconstruction
- Authors: J\'an Koloda, J\"urgen Seiler and Andr\'e Kaup
- Abstract summary: This paper presents a novel method for the reconstruction of images from samples located at non-integer positions, called mesh.
The proposed method relies on a set of initial estimates that are later refined by a new reliability-based content-adaptive framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel method for the reconstruction of images from
samples located at non-integer positions, called mesh. This is a common
scenario for many image processing applications, such as super-resolution,
warping or virtual view generation in multi-camera systems. The proposed method
relies on a set of initial estimates that are later refined by a new
reliability-based content-adaptive framework that employs denoising in order to
reduce the reconstruction error. The reliability of the initial estimate is
computed so stronger denoising is applied to less reliable estimates. The
proposed technique can improve the reconstruction quality by more than 2 dB (in
terms of PSNR) with respect to the initial estimate and it outperforms the
state-of-the-art denoising-based refinement by up to 0.7 dB.
Related papers
- Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras [3.400056739248712]
We propose a mixed training procedure for image restoration neural networks, relying on both natural and synthetic images, that yields a strong improvement of this acutance metric without impairing fidelity terms.
The feasibility of the approach is demonstrated both on the denoising of RGB images and the full development of RAW images, opening the path to a systematic improvement of the texture acutance of real imaging devices.
arXiv Detail & Related papers (2024-02-20T10:47:06Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
We present a novel GAN-based image compression approach with improved rate-distortion optimization process.
To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure.
The proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid (i.e., VVC)
arXiv Detail & Related papers (2023-06-18T03:21:11Z) - Uncertainty-Aware Null Space Networks for Data-Consistent Image
Reconstruction [0.0]
State-of-the-art reconstruction methods have been developed based on recent advances in deep learning.
For such approaches to be used in safety-critical domains such as medical imaging, the network reconstruction should not only provide the user with a reconstructed image, but also with some level of confidence in the reconstruction.
This work is the first approach to solving inverse problems that additionally models data-dependent uncertainty by estimating an input-dependent scale map.
arXiv Detail & Related papers (2023-04-14T06:58:44Z) - Residual Back Projection With Untrained Neural Networks [1.2707050104493216]
We present a framework for iterative reconstruction (IR) in computed tomography (CT)
Our framework incorporates this structural information as a deep image prior (DIP)
We propose using an untrained U-net in conjunction with a novel residual back projection to minimize an objective function and achieve high-accuracy reconstruction.
arXiv Detail & Related papers (2022-10-26T01:58:09Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepRED is a typical representation that combines DIP and regularization by denoising (RED)
In this article, we leverage DeepRED from a Bayesian perspective to reconstruct PET images from a single corrupted sinogram without any supervised or auxiliary information.
arXiv Detail & Related papers (2021-10-29T06:32:21Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.