論文の概要: A Bio-Medical Snake Optimizer System Driven by Logarithmic Surviving Global Search for Optimizing Feature Selection and its application for Disorder Recognition
- arxiv url: http://arxiv.org/abs/2404.07216v1
- Date: Thu, 22 Feb 2024 09:08:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:58:46.138140
- Title: A Bio-Medical Snake Optimizer System Driven by Logarithmic Surviving Global Search for Optimizing Feature Selection and its application for Disorder Recognition
- Title(参考訳): 特徴選択の最適化のためのグローバルサーチを継続する対数探索により駆動されるバイオメディカルスネーク最適化システムとその障害認識への応用
- Authors: Ruba Abu Khurma, Esraa Alhenawi, Malik Braik, Fatma A. Hashim, Amit Chhabra, Pedro A. Castillo,
- Abstract要約: 人間の生命を守ることがいかに重要かを考えると、医療実践を強化することが最重要である。
機械学習技術を用いて患者の予測を自動化することで、医療療法を加速することができる。
この分野における重要な任務のために、いくつかの前処理戦略を採用する必要がある。
- 参考スコア(独自算出の注目度): 1.3755153408022656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is of paramount importance to enhance medical practices, given how important it is to protect human life. Medical therapy can be accelerated by automating patient prediction using machine learning techniques. To double the efficiency of classifiers, several preprocessing strategies must be adopted for their crucial duty in this field. Feature selection (FS) is one tool that has been used frequently to modify data and enhance classification outcomes by lowering the dimensionality of datasets. Excluded features are those that have a poor correlation coefficient with the label class, that is, they have no meaningful correlation with classification and do not indicate where the instance belongs. Along with the recurring features, which show a strong association with the remainder of the features. Contrarily, the model being produced during training is harmed, and the classifier is misled by their presence. This causes overfitting and increases algorithm complexity and processing time. These are used in exploration to allow solutions to be found more thoroughly and in relation to a chosen solution than at random. TLSO, PLSO, and LLSO stand for Tournament Logarithmic Snake Optimizer, Proportional Logarithmic Snake Optimizer, and Linear Order Logarithmic Snake Optimizer, respectively. A number of 22 reference medical datasets were used in experiments. The findings indicate that, among 86 % of the datasets, TLSO attained the best accuracy, and among 82 % of the datasets, the best feature reduction. In terms of the standard deviation, the TLSO also attained noteworthy reliability and stability. On the basis of running duration, it is, nonetheless, quite effective.
- Abstract(参考訳): 人間の生命を守ることがいかに重要かを考えると、医療実践を強化することが最重要となる。
機械学習技術を用いて患者の予測を自動化することで、医療療法を加速することができる。
分類器の効率を2倍にするためには、この分野における重要な任務のためにいくつかの前処理戦略を採用する必要がある。
特徴選択(FS)は、データセットの次元を低くすることで、データの修正や分類結果の強化に頻繁に使用されるツールである。
排他的特徴はラベルクラスとの相関係数が低く、分類と有意な相関関係がなく、インスタンスがどこに属しているかを示さないものである。
繰り返し現れる特徴とともに、残りの特徴と強く結びついている。
対照的に、訓練中に生産されるモデルは害を受け、分類器はその存在によって誤解される。
これによりアルゴリズムの複雑化と処理時間が増大する。
これらは、ランダムな解よりも、より徹底的に、そして選択された解に関連して解を見つけるために、探索に使用される。
TLSO,PLSO,LLSOはそれぞれTournament Logarithmic Snake Optimizer,Proportional Logarithmic Snake Optimizer,Linear Order Logarithmic Snake Optimizerの略である。
実験には22の基準医療データセットが使用された。
その結果,データセットの86%ではTLSOが最も精度が高く,データセットの82%では機能低下が最も高かった。
標準偏差に関しては、TLSOも注目すべき信頼性と安定性を得た。
実行期間に基づくと、それでも非常に効果的である。
関連論文リスト
- Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) は、分析のために同等の人口を選択することで選択バイアスに対処する。
異なるマッチング手法は、すべての検証基準を満たす場合でも、同じタスクに対する平均処理効果(ATE)を著しく異なるものにすることができる。
この問題に対処するため,新しい指標A2Aを導入し,有効試合数を削減した。
論文 参考訳(メタデータ) (2024-07-20T12:42:24Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - A Computational Exploration of Emerging Methods of Variable Importance
Estimation [0.0]
変数の重要性を推定することは、現代の機械学習において必須のタスクである。
本稿では,変数重要度推定の新しい手法の計算的および理論的検討を提案する。
この結果から,PERFは相関性の高いデータでは最高の性能を示した。
論文 参考訳(メタデータ) (2022-08-05T20:00:56Z) - Analysis of lifelog data using optimal feature selection based
unsupervised logistic regression (OFS-ULR) for chronic disease classification [2.3909933791900326]
慢性疾患分類モデルは現在、より良い医療実践を探求するためにライフログデータの可能性を活用している。
本稿では,慢性疾患の分類に最適な特徴選択に基づく非教師なしロジスティック回帰モデル(OFS-ULR)を構築することを目的とする。
論文 参考訳(メタデータ) (2022-04-04T07:11:26Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
子宮頸癌は世界でも最も致命的かつ一般的な疾患の1つである。
ディープラーニングと特徴選択を利用した完全自動化フレームワークを提案する。
このフレームワークは3つの公開ベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2021-06-09T08:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。