Advancements in Radiomics and Artificial Intelligence for Thyroid Cancer Diagnosis
- URL: http://arxiv.org/abs/2404.07239v1
- Date: Tue, 9 Apr 2024 11:05:20 GMT
- Title: Advancements in Radiomics and Artificial Intelligence for Thyroid Cancer Diagnosis
- Authors: Milad Yousefi, Shadi Farabi Maleki, Ali Jafarizadeh, Mahya Ahmadpour Youshanlui, Aida Jafari, Siamak Pedrammehr, Roohallah Alizadehsani, Ryszard Tadeusiewicz, Pawel Plawiak,
- Abstract summary: The application of AI and radiomics to thyroid cancer diagnosis is examined in this review.
A review of multiple databases was conducted in compliance with PRISMA guidelines until October 2023.
- Score: 1.6687900252134487
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Thyroid cancer is an increasing global health concern that requires advanced diagnostic methods. The application of AI and radiomics to thyroid cancer diagnosis is examined in this review. A review of multiple databases was conducted in compliance with PRISMA guidelines until October 2023. A combination of keywords led to the discovery of an English academic publication on thyroid cancer and related subjects. 267 papers were returned from the original search after 109 duplicates were removed. Relevant studies were selected according to predetermined criteria after 124 articles were eliminated based on an examination of their abstract and title. After the comprehensive analysis, an additional six studies were excluded. Among the 28 included studies, radiomics analysis, which incorporates ultrasound (US) images, demonstrated its effectiveness in diagnosing thyroid cancer. Various results were noted, some of the studies presenting new strategies that outperformed the status quo. The literature has emphasized various challenges faced by AI models, including interpretability issues, dataset constraints, and operator dependence. The synthesized findings of the 28 included studies mentioned the need for standardization efforts and prospective multicenter studies to address these concerns. Furthermore, approaches to overcome these obstacles were identified, such as advances in explainable AI technology and personalized medicine techniques. The review focuses on how AI and radiomics could transform the diagnosis and treatment of thyroid cancer. Despite challenges, future research on multidisciplinary cooperation, clinical applicability validation, and algorithm improvement holds the potential to improve patient outcomes and diagnostic precision in the treatment of thyroid cancer.
Related papers
- Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis [0.23221087157793407]
This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19.
Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest, eXtreme Gradient Boosting, and convolutional neural networks.
The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively.
arXiv Detail & Related papers (2024-08-01T00:33:32Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiag is a foundational model supporting 2D and 3D inputs across various modalities and anatomies.
Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5,568 disorders.
arXiv Detail & Related papers (2023-12-26T18:20:48Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future
Directions [3.2071249735671348]
This review paper summarizes a large collection of articles related to artificial intelligence (AI)-based techniques used in the diagnosis of thyroid cancer.
The focus of this study is on how AI-based tools can support the diagnosis and treatment of thyroid cancer, through supervised, unsupervised, or hybrid techniques.
arXiv Detail & Related papers (2023-08-25T17:27:53Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - Deep Learning in Detection and Diagnosis of Covid-19 using Radiology
Modalities: A Systematic Review [0.0]
Early detection and diagnosis of Covid-19 is one of the main challenges in the epidemic of Covid-19.
Medical and computer researchers tended to use machine-learning models to analyze radiology images.
Deep learning Based models have an extraordinary capacity to achieve an accurate and efficient system for the detection and diagnosis of Covid-19.
arXiv Detail & Related papers (2020-12-21T18:54:01Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - A systematic review on the role of artificial intelligence in
sonographic diagnosis of thyroid cancer: Past, present and future [0.6523396727243321]
This review follows a methodology-based classification of the different techniques available for thyroid cancer diagnosis.
We reflect on the trends and challenges of the field of sonographic diagnosis of thyroid malignancies.
Machine learning will continue to play a fundamental role in the development of future thyroid cancer diagnosis frameworks.
arXiv Detail & Related papers (2020-06-10T14:38:05Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.