Generating Reservoir State Descriptions with Random Matrices
- URL: http://arxiv.org/abs/2404.07278v2
- Date: Mon, 3 Jun 2024 07:13:16 GMT
- Title: Generating Reservoir State Descriptions with Random Matrices
- Authors: Samuel Tovey, Tobias Fellner, Christian Holm, Michael Spannowsky,
- Abstract summary: We demonstrate a novel approach to reservoir computer measurements using random matrices.
We do so to motivate how atomic-scale devices might be used for real-world computing applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate a novel approach to reservoir computer measurements using random matrices. We do so to motivate how atomic-scale devices might be used for real-world computing applications. Our approach uses random matrices to construct reservoir measurements, introducing a simple, scalable means for producing state descriptions. In our studies, two reservoirs, a five-atom Heisenberg spin chain, and a five-qubit quantum circuit, perform time series prediction and data interpolation. The performance of the measurement technique and current limitations are discussed in detail alongside an exploration of the diversity of measurements yielded by the random matrices. Additionally, we explore the role of the parameters of the reservoirs, adjusting coupling strength and the measurement dimension, yielding insights into how these learning machines might be automatically tuned for different problems. This research highlights using random matrices to measure simple quantum reservoirs for natural learning devices and outlines a path forward for improving their performance and experimental realization.
Related papers
- Natural gradient and parameter estimation for quantum Boltzmann machines [3.9134031118910264]
We establish formulas for the basic geometry of parameterized thermal states.
We delineate quantum algorithms for estimating the values of these formulas.
Results have applications in developing a natural gradient descent algorithm for quantum Boltzmann machine learning.
arXiv Detail & Related papers (2024-10-31T15:56:06Z) - Towards Efficient Quantum Anomaly Detection: One-Class SVMs using
Variable Subsampling and Randomized Measurements [4.180897432770239]
Quantum computing allows significant advancements in kernel calculation and model precision.
We present two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method.
Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively.
Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel.
arXiv Detail & Related papers (2023-12-14T17:42:18Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Unsupervised Interpretable Learning of Phases From Many-Qubit Systems [2.4352963290061993]
We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems.
Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.
arXiv Detail & Related papers (2022-08-18T14:35:28Z) - Physical reservoir computing using finitely-sampled quantum systems [0.0]
Reservoir computing exploits the nonlinear dynamics of a physical reservoir to perform complex time-series processing tasks.
Here we describe a framework for reservoir computing with nonlinear quantum reservoirs under continuous measurement.
arXiv Detail & Related papers (2021-10-26T16:46:14Z) - Estimation of Convex Polytopes for Automatic Discovery of Charge State
Transitions in Quantum Dot Arrays [27.32875035022296]
We present the first practical algorithm for controlling the transition of electrons in a spin qubit array.
Our proposed algorithm uses active learning, to find the count, shapes and sizes of all facets of a given polytope.
Our results show that we can reliably find the facets of the polytope, including small facets with sizes on the order of the measurement precision.
arXiv Detail & Related papers (2021-08-20T12:07:10Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Learning Log-Determinant Divergences for Positive Definite Matrices [47.61701711840848]
In this paper, we propose to learn similarity measures in a data-driven manner.
We capitalize on the alphabeta-log-det divergence, which is a meta-divergence parametrized by scalars alpha and beta.
Our key idea is to cast these parameters in a continuum and learn them from data.
arXiv Detail & Related papers (2021-04-13T19:09:43Z) - Learning with Density Matrices and Random Features [44.98964870180375]
A density matrix describes the statistical state of a quantum system.
It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems.
This paper explores how density matrices can be used as a building block for machine learning models.
arXiv Detail & Related papers (2021-02-08T17:54:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.