論文の概要: We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text
- arxiv url: http://arxiv.org/abs/2404.07304v2
- Date: Sun, 16 Jun 2024 02:09:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 04:57:50.448265
- Title: We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text
- Title(参考訳): インターベンション:非標準テキストへの言語モデルの適用における基礎的ハードルを探る
- Authors: Aarohi Srivastava, David Chiang,
- Abstract要約: 非標準テキストへの言語モデル適応の根底にある課題を理解するための一連の実験を提示する。
我々は、言語モデルの既存バイアスとの相互作用と、いくつかの種類の言語的変動を近似する介入を設計する。
学習データのサイズや性質の異なる言語モデル適応時の介入を適用することで、知識伝達がいつ成功するかについて重要な洞察を得ることができる。
- 参考スコア(独自算出の注目度): 8.956635443376527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text. We do so by designing interventions that approximate several types of linguistic variation and their interactions with existing biases of language models. Applying our interventions during language model adaptation with varying size and nature of training data, we gain important insights into when knowledge transfer can be successful, as well as the aspects of linguistic variation that are particularly difficult for language models to deal with. For instance, on text with character-level variation, performance improves with even a few training examples but approaches a plateau, suggesting that more data is not the solution. In contrast, on text with variation involving new words or meanings, far more data is needed, but it leads to a massive breakthrough in performance. Our findings reveal that existing models lack the necessary infrastructure to handle diverse forms of nonstandard text and linguistic variation, guiding the development of more resilient language modeling techniques for the future. We make the code for our interventions, which can be applied to any English text data, publicly available.
- Abstract(参考訳): 非標準テキストへの言語モデル適応の根底にある課題を理解するための一連の実験を提示する。
我々は、言語モデルの既存バイアスとの相互作用と、いくつかの種類の言語的変動を近似する介入を設計する。
学習データのサイズや性質の異なる言語モデル適応における介入の適用により、知識伝達がいつ成功するか、そして言語モデルが特に扱うのが困難な言語的変化の側面について重要な洞察を得る。
例えば、文字レベルのバリエーションのあるテキストでは、いくつかのトレーニング例でもパフォーマンスが向上するが、プラトーに近づくと、より多くのデータがソリューションではないことが示唆される。
対照的に、新しい単語や意味を含むバリエーションのあるテキストでは、はるかに多くのデータが必要ですが、パフォーマンスに大きなブレークスルーをもたらします。
以上の結果から,既存のモデルは多種多様な非標準テキストや言語的変化を扱うために必要な基盤が欠如していることが判明した。
我々は、英語のテキストデータに適用可能な介入のためのコードを作成し、公開しています。
関連論文リスト
- Variationist: Exploring Multifaceted Variation and Bias in Written Language Data [3.666781404469562]
言語データの探索と理解は、人間の言語を扱うあらゆる分野において、基本的な段階である。
しかし現時点では、言語の変化とバイアスをシームレスに検査し視覚化する、統一的でカスタマイズ可能なツールが欠如している。
本稿では、このギャップを埋める高度にモジュラーで記述的でタスクに依存しないツールである「変分主義」を紹介する。
論文 参考訳(メタデータ) (2024-06-25T15:41:07Z) - Exploring Tokenization Strategies and Vocabulary Sizes for Enhanced Arabic Language Models [0.0]
本稿では,アラビア語モデルの性能に及ぼすトークン化戦略と語彙サイズの影響について検討する。
本研究は, 語彙サイズがモデルサイズを一定に保ちながら, モデル性能に及ぼす影響を限定的に明らかにした。
論文のレコメンデーションには、方言の課題に対処するためのトークン化戦略の洗練、多様な言語コンテキストにわたるモデルの堅牢性の向上、リッチな方言ベースのアラビア語を含むデータセットの拡大が含まれる。
論文 参考訳(メタデータ) (2024-03-17T07:44:44Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Detecting ESG topics using domain-specific language models and data
augmentation approaches [3.3332986505989446]
金融分野における自然言語処理タスクは、適切にラベル付けされたデータのあいまいさのため、依然として困難なままである。
本稿では,これらの問題を緩和するための2つのアプローチについて検討する。
まず、ビジネスおよび財務ニュースから大量のドメイン内データを用いて、さらなる言語モデルの事前学習実験を行う。
次に、モデル微調整のためのデータセットのサイズを増やすために拡張アプローチを適用します。
論文 参考訳(メタデータ) (2020-10-16T11:20:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。