論文の概要: AI-Guided Defect Detection Techniques to Model Single Crystal Diamond Growth
- arxiv url: http://arxiv.org/abs/2404.07306v1
- Date: Wed, 10 Apr 2024 18:58:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:48:02.402652
- Title: AI-Guided Defect Detection Techniques to Model Single Crystal Diamond Growth
- Title(参考訳): 単結晶ダイヤモンド成長モデルのためのAI誘導欠陥検出技術
- Authors: Rohan Reddy Mekala, Elias Garratt, Matthias Muehle, Arjun Srinivasan, Adam Porter, Mikael Lindvall,
- Abstract要約: 化学気相沈着によるダイヤモンドの成長は 著しい進歩を遂げました
しかし、高品質で大面積の材料生産を達成する上での課題は続いている。
In-situ光画像を用いた欠陥分割パイプラインの研究について詳述する。
- 参考スコア(独自算出の注目度): 7.708823384783919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: From a process development perspective, diamond growth via chemical vapor deposition has made significant strides. However, challenges persist in achieving high quality and large-area material production. These difficulties include controlling conditions to maintain uniform growth rates for the entire growth surface. As growth progresses, various factors or defect states emerge, altering the uniform conditions. These changes affect the growth rate and result in the formation of crystalline defects at the microscale. However, there is a distinct lack of methods to identify these defect states and their geometry using images taken during the growth process. This paper details seminal work on defect segmentation pipeline using in-situ optical images to identify features that indicate defective states that are visible at the macroscale. Using a semantic segmentation approach as applied in our previous work, these defect states and corresponding derivative features are isolated and classified by their pixel masks. Using an annotation focused human-in-the-loop software architecture to produce training datasets, with modules for selective data labeling using active learning, data augmentations, and model-assisted labeling, our approach achieves effective annotation accuracy and drastically reduces the time and cost of labeling by orders of magnitude. On the model development front, we found that deep learning-based algorithms are the most efficient. They can accurately learn complex representations from feature-rich datasets. Our best-performing model, based on the YOLOV3 and DeeplabV3plus architectures, achieved excellent accuracy for specific features of interest. Specifically, it reached 93.35% accuracy for center defects, 92.83% for polycrystalline defects, and 91.98% for edge defects.
- Abstract(参考訳): プロセス開発の観点からは、化学気相蒸着によるダイヤモンドの成長が著しく進展した。
しかし、高品質で大面積の材料生産を達成する上での課題は続いている。
これらの困難には、成長面全体の均一な成長率を維持するための制御条件が含まれる。
成長が進むにつれて、様々な要因や欠陥状態が出現し、均一な状態が変化する。
これらの変化は成長速度に影響を与え、その結果ミクロスケールで結晶欠陥が形成される。
しかし、成長過程で撮影された画像を用いて、これらの欠陥状態とそれらの幾何を特定する方法が明らかに欠如している。
本論文は, マクロスケールで見られる欠陥状態を示す特徴を特定するために, その場光学画像を用いた欠陥分割パイプラインに関する基礎研究を詳述する。
本研究で適用した意味的セグメンテーション手法を用いて,これらの欠陥状態とそれに対応する微分特徴を,画素マスクによって分離・分類する。
アノテーションに着目したヒューマン・イン・ザ・ループ・ソフトウェアアーキテクチャを用いてトレーニングデータセットを作成し、アクティブラーニング、データ拡張、モデル支援ラベルを用いた選択的データラベリングのためのモジュールを用いて、効果的なアノテーション精度を実現し、桁違いのラベリングの時間とコストを大幅に削減する。
モデル開発の面では、ディープラーニングベースのアルゴリズムが最も効率的であることが分かりました。
機能豊富なデータセットから複雑な表現を正確に学習することができる。
YOLOV3とDeeplabV3の余剰アーキテクチャをベースとした我々の最高の性能モデルは、興味のある特定の特徴に対して優れた精度を実現した。
具体的には、中心欠陥は93.35%、多結晶欠陥は92.83%、縁欠陥は91.98%に達した。
関連論文リスト
- Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - AI-Guided Feature Segmentation Techniques to Model Features from Single Crystal Diamond Growth [7.708823384783919]
ダイヤモンド, ポケットホルダー, 背景などの幾何学的特徴の正確な画素マスクを, 形状と大きさに基づく微分特徴とともに分離し, 分類するための, 深層学習によるセマンティックセマンティックセマンティックセマンティクス手法を提案する。
DeeplabV3plusアーキテクチャに基づく当社のトップパフォーマンスモデルは、ポケットホルダーの96.31%、ダイヤモンドトップの98.60%、ダイヤモンドサイドの特徴の91.64%という、興味のある特徴の分類において顕著な精度を実現しています。
論文 参考訳(メタデータ) (2024-04-10T19:16:08Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Learning to Identify Drilling Defects in Turbine Blades with Single
Stage Detectors [15.842163335920954]
タービンブレードのX線画像における網膜ドリル欠陥に基づくモデルを提案する。
このアプリケーションは、欠陥が非常に小さく、一般的に使用されるアンカーサイズによって捉えられにくい画像解像度のため、難しい。
このモデルを3ドルのクロスバリデーションで検証し,欠陥のある画像の同定に極めて高い精度を示す。
論文 参考訳(メタデータ) (2022-08-08T18:44:51Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
既存の画像データセットを解析することで、データ拡張の利点を調べることに重点を置いている。
以上の結果から,既存技術(SOTA)モデルの性能とロバスト性は劇的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-06T03:39:37Z) - Performance, Successes and Limitations of Deep Learning Semantic
Segmentation of Multiple Defects in Transmission Electron Micrographs [9.237363938772479]
深層学習Mask Regional Convolutional Neural Network (Mask R-CNN)モデルを用いて, 電子顕微鏡によるFeCrAl合金の欠陥のセマンティックセグメンテーションを行う。
本稿では, 欠陥形状の予測分布, 欠陥サイズ, 欠陥同感度などの量に着目し, キーモデルの性能統計の詳細な分析を行う。
全体として、現在のモデルは、顕微鏡画像中の複数の欠陥タイプを自動解析し、定量化するための、高速で効果的なツールであることがわかった。
論文 参考訳(メタデータ) (2021-10-15T17:57:59Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
原子分解能顕微鏡画像からの格子欠陥の検出を支援する半教師付き機械学習手法を提案する。
これには、画像パッチを欠陥または非欠陥として分類する畳み込みニューラルネットワーク、モデルとして1つの非欠陥パッチを選択するグラフベース、そして最後に自動生成された畳み込みフィルタバンクが含まれる。
このアルゴリズムは、III-V/Si結晶材料上でテストされ、異なる測定値に対してうまく評価され、非常に小さなトレーニングデータセットであっても有望な結果を示す。
論文 参考訳(メタデータ) (2020-07-02T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。