Indoor Location Fingerprinting Privacy: A Comprehensive Survey
- URL: http://arxiv.org/abs/2404.07345v1
- Date: Wed, 10 Apr 2024 21:02:58 GMT
- Title: Indoor Location Fingerprinting Privacy: A Comprehensive Survey
- Authors: Amir Fathalizadeh, Vahideh Moghtadaiee, Mina Alishahi,
- Abstract summary: The pervasive integration of Indoor Positioning Systems (IPS) leads to the widespread adoption of Location-Based Services (LBS)
indoor location fingerprinting employs diverse signal fingerprints from user devices, enabling precise location identification by Location Service Providers (LSP)
Despite its broad applications across various domains, indoor location fingerprinting introduces a notable privacy risk, as both LSP and potential adversaries inherently have access to this sensitive information, compromising users' privacy.
- Score: 0.09831489366502298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pervasive integration of Indoor Positioning Systems (IPS) arises from the limitations of Global Navigation Satellite Systems (GNSS) in indoor environments, leading to the widespread adoption of Location-Based Services (LBS). Specifically, indoor location fingerprinting employs diverse signal fingerprints from user devices, enabling precise location identification by Location Service Providers (LSP). Despite its broad applications across various domains, indoor location fingerprinting introduces a notable privacy risk, as both LSP and potential adversaries inherently have access to this sensitive information, compromising users' privacy. Consequently, concerns regarding privacy vulnerabilities in this context necessitate a focused exploration of privacy-preserving mechanisms. In response to these concerns, this survey presents a comprehensive review of Privacy-Preserving Mechanisms in Indoor Location Fingerprinting (ILFPPM) based on cryptographic, anonymization, differential privacy (DP), and federated learning (FL) techniques. We also propose a distinctive and novel grouping of privacy vulnerabilities, adversary and attack models, and available evaluation metrics specific to indoor location fingerprinting systems. Given the identified limitations and research gaps in this survey, we highlight numerous prospective opportunities for future investigation, aiming to motivate researchers interested in advancing this field. This survey serves as a valuable reference for researchers and provides a clear overview for those beyond this specific research domain.
Related papers
- Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.
Their reliance on massive internet-sourced datasets for training brings notable privacy issues.
Certain application-specific scenarios may require fine-tuning these models on private data.
arXiv Detail & Related papers (2024-08-10T05:41:19Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Differentially Private GANs for Generating Synthetic Indoor Location Data [0.09831489366502298]
We introduce an indoor localization framework employing DPGANs in order to generate privacy-preserving indoor location data.
We evaluate the performance of our framework on a real-world indoor localization dataset.
arXiv Detail & Related papers (2024-04-10T21:43:27Z) - Privacy risk in GeoData: A survey [3.7228963206288967]
We analyse different geomasking techniques proposed to protect individuals' privacy in geodata.
We propose a taxonomy to characterise these techniques across various dimensions.
Our proposed taxonomy serves as a practical resource for data custodians, offering them a means to navigate the extensive array of existing privacy mechanisms.
arXiv Detail & Related papers (2024-02-06T00:55:06Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
This paper proposes a personalized trajectory privacy protection mechanism (PTPPM)
We identify a protection location set (PLS) for each location by employing the Hilbert curve-based minimum distance search algorithm.
We put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism.
arXiv Detail & Related papers (2024-01-20T12:59:08Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Location Privacy Threats and Protections in 6G Vehicular Networks: A Comprehensive Review [23.901688216192397]
Location privacy is critical in vehicular networks, where drivers' trajectories and personal information can be exposed.
This survey reviews comprehensively different localization techniques, including sensing infrastructure-based, optical vision-based, and cellular radio-based localization.
We classify Location Privacy Preserving Mechanisms (LPPMs) into user-side, server-side, and user-server-interface-based, and evaluate their effectiveness.
arXiv Detail & Related papers (2023-05-08T06:55:35Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
We present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP)
Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier"
This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions.
arXiv Detail & Related papers (2023-04-14T05:29:18Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.