LLMs in Biomedicine: A study on clinical Named Entity Recognition
- URL: http://arxiv.org/abs/2404.07376v2
- Date: Thu, 11 Jul 2024 05:09:30 GMT
- Title: LLMs in Biomedicine: A study on clinical Named Entity Recognition
- Authors: Masoud Monajatipoor, Jiaxin Yang, Joel Stremmel, Melika Emami, Fazlolah Mohaghegh, Mozhdeh Rouhsedaghat, Kai-Wei Chang,
- Abstract summary: Large Language Models (LLMs) demonstrate remarkable versatility in various NLP tasks.
This paper investigates strategies to enhance their performance for the NER task.
Our proposed method, DiRAG, can boost the zero-shot F1 score of LLMs for biomedical NER.
- Score: 42.71263594812782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate remarkable versatility in various NLP tasks but encounter distinct challenges in biomedical due to the complexities of language and data scarcity. This paper investigates LLMs application in the biomedical domain by exploring strategies to enhance their performance for the NER task. Our study reveals the importance of meticulously designed prompts in the biomedical. Strategic selection of in-context examples yields a marked improvement, offering ~15-20\% increase in F1 score across all benchmark datasets for biomedical few-shot NER. Additionally, our results indicate that integrating external biomedical knowledge via prompting strategies can enhance the proficiency of general-purpose LLMs to meet the specialized needs of biomedical NER. Leveraging a medical knowledge base, our proposed method, DiRAG, inspired by Retrieval-Augmented Generation (RAG), can boost the zero-shot F1 score of LLMs for biomedical NER. Code is released at \url{https://github.com/masoud-monajati/LLM_Bio_NER}
Related papers
- A Survey for Large Language Models in Biomedicine [31.719451674137844]
This review is based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv.
We explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine.
We discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics.
arXiv Detail & Related papers (2024-08-29T12:39:16Z) - LLMs are not Zero-Shot Reasoners for Biomedical Information Extraction [13.965777046473885]
Large Language Models (LLMs) are increasingly adopted for applications in healthcare.
It is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain.
arXiv Detail & Related papers (2024-08-22T09:37:40Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains.
textscBiomedRAG attains superior performance across 5 biomedical NLP tasks.
textscBiomedRAG outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
arXiv Detail & Related papers (2024-05-01T12:01:39Z) - Intent Detection and Entity Extraction from BioMedical Literature [14.52164637112797]
Large-language models (LLMs) motivated by endeavours to attain generalized intelligence, their efficacy in replacing task and domain-specific natural language understanding approaches remains questionable.
We show that Supervised Fine Tuned approaches are still relevant and more effective than general-purpose LLMs.
arXiv Detail & Related papers (2024-04-04T17:09:52Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - BioADAPT-MRC: Adversarial Learning-based Domain Adaptation Improves
Biomedical Machine Reading Comprehension Task [4.837365865245979]
We present an adversarial learning-based domain adaptation framework for the biomedical machine reading comprehension task.
BioADAPT-MRC is a neural network-based method to address the discrepancies in the marginal distributions between the general and biomedical domain datasets.
arXiv Detail & Related papers (2022-02-26T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.