論文の概要: Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
- arxiv url: http://arxiv.org/abs/2404.07395v1
- Date: Thu, 11 Apr 2024 00:02:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:28:21.702960
- Title: Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
- Title(参考訳): グローバル対ローカル: 熱帯サイクロン強度推定のためのAlexNetアーキテクチャの評価
- Authors: Vikas Dwivedi,
- Abstract要約: AlexNetアーキテクチャに基づく2つのアンサンブルモデルを導入し、熱帯性サイクロン強度を推定する。
我々は、公開サイクロン画像データセットを用いて、TextitDeeptiと呼ばれるディープラーニングベンチマークモデルに対して、両方のモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the destructive impacts of tropical cyclones, it is critical to have a reliable system for cyclone intensity detection. Various techniques are available for this purpose, each with differing levels of accuracy. In this paper, we introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity using visible satellite images. The first model, trained on the entire dataset, is called the global AlexNet model. The second model is a distributed version of AlexNet in which multiple AlexNets are trained separately on subsets of the training data categorized according to the Saffir-Simpson wind speed scale prescribed by the meterologists. We evaluated the performance of both models against a deep learning benchmark model called \textit{Deepti} using a publicly available cyclone image dataset. Results indicate that both the global model (with a root mean square error (RMSE) of 9.03 knots) and the distributed model (with a RMSE of 9.3 knots) outperform the benchmark model (with a RMSE of 13.62 knots). We provide a thorough discussion of our solution approach, including an explanantion of the AlexNet's performance using gradient class activation maps (grad-CAM). Our proposed solution strategy allows future experimentation with various deep learning models in both single and multi-channel settings.
- Abstract(参考訳): 熱帯性サイクロンの破壊的影響を考えると、サイクロン強度検出のための信頼性の高いシステムを持つことが重要である。
この目的のために様々な技術が利用可能であり、それぞれ異なるレベルの精度を持つ。
本稿では、AlexNetアーキテクチャに基づく2つのアンサンブルモデルを導入し、可視衛星画像を用いた熱帯サイクロン強度を推定する。
データセット全体をトレーニングした最初のモデルは、グローバルAlexNetモデルと呼ばれる。
第2のモデルはAlexNetの分散バージョンであり、複数のAlexNetは、測定者によって規定されたSaffir-Simpson風速尺度に従って分類されたトレーニングデータのサブセットで個別に訓練される。
両モデルの性能を,公開サイクロン画像データセットを用いたディープラーニングベンチマークモデルである「textit{Deepti}」と比較した。
結果は、グローバルモデル(ルート平均二乗誤差9.03ノット)と分散モデル(RMSE9.3ノット)がベンチマークモデル(RMSE13.62ノット)を上回っていることを示している。
我々は、勾配クラスアクティベーションマップ(grad-CAM)を用いたAlexNetの性能の説明を含む、ソリューションアプローチの徹底的な議論を行う。
提案手法は,シングルチャネルとマルチチャネルの両方で,様々なディープラーニングモデルによる将来の実験を可能にする。
関連論文リスト
- Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
可変点雲補完法は、局所的な詳細を欠くため、大域的な形状の骨格を生成する傾向がある。
本稿では2つの魅力的な特性を持つ変分フレームワークであるポイントコンプリートネットワーク(VRCNet)を提案する。
VRCNetは、現実世界のポイントクラウドスキャンにおいて、非常に一般化性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-04-18T17:03:20Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - NuSPAN: A Proximal Average Network for Nonuniform Sparse Model --
Application to Seismic Reflectivity Inversion [23.080395291046408]
我々は, 地震データの高分解能回復の観点から, 近位脱畳の問題を解く。
凸と非一様シグナライザの組み合わせを用いる。
結果として生じるスパースネットワークアーキテクチャは、データ駆動方式で取得できる。
論文 参考訳(メタデータ) (2021-05-01T04:33:02Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Recalibration of Neural Networks for Point Cloud Analysis [3.7814216736076434]
3Dポイントクラウドのためのディープニューラルネットワーク上での再校正モジュールを導入する。
提案モジュールを3次元ポイントクラウド解析のための3つの最先端ネットワークに組み込むことで,提案モジュールのメリットと汎用性を実証する。
第2の実験では,アルツハイマー病の診断における再校正ブロックの利点について検討した。
論文 参考訳(メタデータ) (2020-11-25T17:14:34Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z) - Tropical and Extratropical Cyclone Detection Using Deep Learning [0.7025418443146436]
U-Net構造を用いたディープラーニングセグメンテーション画像モデルは、より制限的なアプローチによって欠落した領域を特定することができる。
4つのU-Netモデルは、熱帯と熱帯のサイクロン地域を検知するために設計されている。
熱帯性サイクロンU-Netモデルは、同じROIを検出するために使用される同等のモデルよりも3倍高速に動作した。
論文 参考訳(メタデータ) (2020-05-18T20:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。