Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
- URL: http://arxiv.org/abs/2404.07395v1
- Date: Thu, 11 Apr 2024 00:02:57 GMT
- Title: Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
- Authors: Vikas Dwivedi,
- Abstract summary: We introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity.
We evaluate the performance of both models against a deep learning benchmark model called textitDeepti using a publicly available cyclone image dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the destructive impacts of tropical cyclones, it is critical to have a reliable system for cyclone intensity detection. Various techniques are available for this purpose, each with differing levels of accuracy. In this paper, we introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity using visible satellite images. The first model, trained on the entire dataset, is called the global AlexNet model. The second model is a distributed version of AlexNet in which multiple AlexNets are trained separately on subsets of the training data categorized according to the Saffir-Simpson wind speed scale prescribed by the meterologists. We evaluated the performance of both models against a deep learning benchmark model called \textit{Deepti} using a publicly available cyclone image dataset. Results indicate that both the global model (with a root mean square error (RMSE) of 9.03 knots) and the distributed model (with a RMSE of 9.3 knots) outperform the benchmark model (with a RMSE of 13.62 knots). We provide a thorough discussion of our solution approach, including an explanantion of the AlexNet's performance using gradient class activation maps (grad-CAM). Our proposed solution strategy allows future experimentation with various deep learning models in both single and multi-channel settings.
Related papers
- Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
We show that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary.
arXiv Detail & Related papers (2022-04-14T15:14:08Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - NuSPAN: A Proximal Average Network for Nonuniform Sparse Model --
Application to Seismic Reflectivity Inversion [23.080395291046408]
We solve the problem of proximal deconvolution in the context of high-resolution recovery of seismic data.
We employ a combination of convex and non-uniform signalizers.
The resulting sparse network architecture can be acquired in a data-driven fashion.
arXiv Detail & Related papers (2021-05-01T04:33:02Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Recalibration of Neural Networks for Point Cloud Analysis [3.7814216736076434]
We introduce re-calibration modules on deep neural networks for 3D point clouds.
We demonstrate the benefit and versatility of our proposed modules by incorporating them into three state-of-the-art networks for 3D point cloud analysis.
In the second set of experiments, we investigate the benefits of re-calibration blocks on Alzheimer's Disease diagnosis.
arXiv Detail & Related papers (2020-11-25T17:14:34Z) - From Sound Representation to Model Robustness [82.21746840893658]
We investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
Averaged over various experiments on three environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures.
arXiv Detail & Related papers (2020-07-27T17:30:49Z) - Tropical and Extratropical Cyclone Detection Using Deep Learning [0.7025418443146436]
Deep learning segmentation image models using the U-Net structure can identify areas missed by more restrictive approaches.
Four U-Net models are designed for detection of tropical and extratropical cyclone Regions Of Interest.
The extratropical cyclone U-Net model performed 3 times faster than the comparable model used to detect the same ROI.
arXiv Detail & Related papers (2020-05-18T20:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.