QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small
Object Detection
- URL: http://arxiv.org/abs/2103.09136v1
- Date: Tue, 16 Mar 2021 15:30:20 GMT
- Title: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small
Object Detection
- Authors: Chenhongyi Yang, Zehao Huang and Naiyan Wang
- Abstract summary: We propose a novel query mechanism to accelerate the inference speed of feature-pyramid based object detectors.
The pipeline first predicts the coarse locations of small objects on low-resolution features and then computes the accurate detection results using high-resolution features.
On the popular COCO dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by 2.0, and the high-resolution inference speed is improved to 3.0x on average.
- Score: 17.775203579232144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While general object detection with deep learning has achieved great success
in the past few years, the performance and efficiency of detecting small
objects are far from satisfactory. The most common and effective way to promote
small object detection is to use high-resolution images or feature maps.
However, both approaches induce costly computation since the computational cost
grows squarely as the size of images and features increases. To get the best of
two worlds, we propose QueryDet that uses a novel query mechanism to accelerate
the inference speed of feature-pyramid based object detectors. The pipeline
composes two steps: it first predicts the coarse locations of small objects on
low-resolution features and then computes the accurate detection results using
high-resolution features sparsely guided by those coarse positions. In this
way, we can not only harvest the benefit of high-resolution feature maps but
also avoid useless computation for the background area. On the popular COCO
dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by
2.0, and the high-resolution inference speed is improved to 3.0x on average. On
VisDrone dataset, which contains more small objects, we create a new
state-of-the-art while gaining a 2.3x high-resolution acceleration on average.
Code is available at: https://github.com/ChenhongyiYang/QueryDet-PyTorch
Related papers
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
arXiv Detail & Related papers (2024-04-09T10:03:44Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - A Coarse to Fine Framework for Object Detection in High Resolution Image [8.316322664637537]
Current approaches of object detection seldom consider detecting tiny object or the large scale variance problem in high resolution images.
We introduce a simple yet efficient approach that improves accuracy of object detection especially for small objects and large scale variance scene.
Our approach can make good use of the sparsity of the objects and the information in high-resolution image, thereby making the detection more efficient.
arXiv Detail & Related papers (2023-03-02T13:04:33Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
We propose a novel lightweight ORSI-SOD solution, named CorrNet, to address these issues.
By reducing the parameters and computations of each component, CorrNet ends up having only 4.09M parameters and running with 21.09G FLOPs.
Experimental results on two public datasets demonstrate that our lightweight CorrNet achieves competitive or even better performance compared with 26 state-of-the-art methods.
arXiv Detail & Related papers (2022-01-20T08:28:01Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.